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Abstract

In the presence of glycoproteins, bacterial and yeast biofilms are hypothesised to expand
by sliding motility. This involves a sheet of cells spreading as a unit, facilitated by cell
proliferation and weak adhesion to the substratum. In this paper, we derive an extensional
flow model for biofilm expansion by sliding motility to test this hypothesis. We treat
the biofilm two-phase (living cells and an extracellular matrix) viscous fluid mixture, and
model nutrient depletion and uptake from the substratum. We simplify the governing
equations using a thin-film approximation, which reduces the model to axisymmetric
form. After estimating parameters from mat formation experiments of Saccharomyces
cerevisiae, we obtain good agreement between numerical solutions to our model and the
experimental expansion speed. We then demonstrate how cell proliferation and death rates,
fluid production rate, and movement and consumption of nutrients affect expansion speed,
enabling us to predict biofilm expansion for different microbes and experimental conditions.
Finally, we show that sliding motility alone can explain the ridge formation observed in
some biofilms. Introducing surface tension inhibits ridge formation, by reducing transport
of fluids and nutrients towards the proliferating rim. Overall, these results confirm that
sliding motility is a possible mechanism for yeast biofilm expansion.

Keywords: Saccharomyces cerevisiae, yeast, mat formation experiments, lubrication theory,
multi-phase flow, viscous flow

1 Introduction

Micro-organisms can form colonies with fascinating and complex spatiotemporal patterns.
As these colonies are readily grown in experiments, bacteria and fungi are often used as
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model organisms to investigate the mechanisms of pattern formation in large collections
of cells. Identifying the contributions of different candidate mechanisms to the self-
organisation process is an important problem in developmental biology [1]. For example,
Turing [2] and Keller and Segel [3] famously showed that heterogeneous patterns can
develop from a homogeneous initial state as a result of reaction and diffusion of chemicals.
Murray [1] proposed a more general mechanochemical theory, where chemical signals
combine with mechanical interactions between cells and their environment to give rise
to spatial patterns. As these mechanisms can interact in a complex manner, pattern
formation in micro-organisms continues to be an active field of research.

Reynolds and Fink [4] showed that the bakers’ yeast Saccharomyces cerevisiae can
form mats when grown on semi-solid agar. These mats consist of cells embedded in
a self-produced extracellular matrix (ECM), and consequently established S. cerevisiae
as a useful model organism for fungal biofilm formation. We previously showed that
a minimal reaction–diffusion model for nutrient-limited growth alone could reproduce
the floral pattern observed in mat formation experiments [5]. However, experimental
observations also led Reynolds and Fink [4] to hypothesise that yeast biofilms expand by
sliding motility. This is a form of passive translocation, in which a sheet of cells spreads
as a unit due to the expansive forces of cell growth [6], and reduced friction between the
cells and substratum [7]. This mechanism was not considered in previous models.

In this work, we use a combination of mathematical modelling and experiments to
investigate the extent to which sliding motility contributes to yeast biofilm formation. In
§1.1 and §1.2, we review the existing literature on yeast biofilms and the mathematical
modelling thereof. In §2, we derive a two-phase (living cells and the ECM) mathematical
model for biofilm expansion. We then exploit the thin biofilm geometry to obtain a one-
dimensional, radially symmetric thin-film approximation to the general model in §3. We
compute numerical solutions to the model in §4, and show that the model can reproduce
the expansion speed observed in experiments. We confirm that cell proliferation drives
expansion in sliding motility, and demonstrate how movement, uptake, and consumption
of nutrients affect expansion speed. We close the paper in §5, concluding that sliding
motility is a plausible mechanism for biofilm formation in yeast.

1.1 Biological background

A biofilm is a slimy community of micro-organisms existing on a surface, in which cells
adhere to each other and reside within a self-produced extracellular matrix (ECM). An
estimated 80% of bacteria in nature exists in biofilm colonies [8]. For this reason, they have
been described as the ‘oldest, most successful and widespread form of life on Earth’ [9], and
have attracted significant research attention. Our main objective is to better understand
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the mechanisms of yeast biofilm expansion. Yeasts are single-cell fungal organisms that
have well-known everyday uses, for example in baking and brewing. However, yeast species
such as the pathogenic Candida albicans, often form biofilms on indwelling medical devices
[10]. These biofilms are a leading cause of infections in clinical settings, and can be up
to 2000 times more resistant to anti-fungal agents than planktonic cells [8]. Inability to
remove fungal biofilms can lead to candidiasis, which is an invasive disease estimated to
affect around 0.2% of the population per year. Due to its high resistance to treatment,
candidiasis has a mortality rate of 30%–40% in immunocompromised people [11]. However,
despite these significant impacts on human health, fungal biofilms are much less widely
studied than bacterial biofilms [12].

The extracellular matrix is a distinguishing feature of biofilms. It consists of water,
which forms up to 97% of matrix material [13], and various extracellular polymeric
substances (EPS). Although the composition and function of the ECM may differ between
species, it provides biofilm colonies with several advantages over planktonic cells, as
summarised by Flemming and Wingender [9]. For yeast biofilms specifically, the ECM
has been observed to assist the transportation of nutrients and water [14], and prevent
penetration of harmful external substances [15]. The ECM also influences biofilm rheology.
Although biofilms are viscoelastic in general, on time scales longer than the order of
minutes they tend to behave as viscous fluids [9, 16, 17].

The budding yeast Saccharomyces cerevisiae has emerged as a useful model for fungal
biofilm growth in cell biology research [4]. A major advantage of using S. cerevisiae in
experiments is that its genome has been sequenced [18], and a wide variety of genetic tools
such as mutant libraries are available. As it is closely related to C. albicans [19], it has
assumed an important role in the identification of new targets for anti-fungal therapy [4,
20]. Furthermore, as a eukaryotic organism its basic cellular processes also have a lot in
common with human cells [20]. Due to this, S. cerevisiae has also been used as a model
for understanding the division of cancer cells [12].

Reynolds and Fink [4] were the first to perform mat formation experiments with S.
cerevisiae, and similar methods have been used in subsequent studies [5, 12, 21]. In these
experiments, yeast cells are inoculated on semi-solid (0.3%) agar plates. They initially
form a thin round biofilm, which over time expands and forms a complex mat structure,
characterised by petal-like features at its edge. This transition is illustrated in Figure 1.1.

A notable finding of Reynolds and Fink [4] is that the glycoprotein Flo11p is required
for mat formation. Similar glycopeptidolipids are prerequisites for biofilm formation in
Mycobacterium smegmatis, as they increase cell surface hydrophobicity, which results in
weak adhesion between the biofilm and substratum [7]. This led Reynolds and Fink to
hypothesise that sliding motility was the driving mechanism of yeast biofilm formation.
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(a) 68 h. (b) 117 h. (c) 164 h. (d) 237 h.

Figure 1.1: A time series of images for a S. cerevisiae mat formation experiment [5].

Recent studies on bacterial biofilms have also revealed that osmotic swelling is another
potential mechanism for biofilm expansion [22, 23]. This requires production of EPS, which
creates an osmotic pressure difference between the biofilm and environment. The biofilm
then physically expands by taking up water from the agar [22]. The extent to which sliding
motility and osmotic swelling contribute to expansion depends on the microbial species
and environment [23]. For example, in some bacterial biofilms including Bacillus subtilis,
in which ECM fraction is commonly 50–90% [24] and can be as high as 95–98% [13, 25],
osmotic swelling is the primary mechanism [22]. In contrast, we observe that ECM fraction
is approximately 10% in S. cerevisiae mats, suggesting that cell proliferation and sliding
motility will play a larger role. However, no detailed study into whether sliding motility is
the mechanism of yeast biofilm expansion has been performed. Investigating this is the
subject of our paper.

1.2 Previous models of biofilm formation

Owing to their ubiquity and importance to infections, biofilms have attracted significant
attention in the applied mathematics community. Previous models have incorporated
a wide variety of approaches (see Mattei et al. [24] for a comprehensive recent review).
These include agent-based or hybrid models [26–28], and reaction–diffusion system [5,
12, 29–31], both of which model the spread of cells, and movement and consumption of
nutrients. However, a limitation of both of these approaches is that it is difficult to include
the effect of colony mechanics, such as extracellular fluid flow [32]. As modelling sliding
motility requires considering the ECM mechanics, we restrict our attention here to models
that incorporate the extracellular fluid.

In the literature, many models that incorporate the flow of external fluid involve
biofilms growing vertically on non-reactive, impermeable substrata [33–35]. Several models
also consider mechanical effects in spreading biofilms [36–38]. We focus primarily on
another promising approach, which is to model the biofilm as a multi-phase mixture of
fluids. In these models, biofilms are typically modelled as some combination of cells, EPS,
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and external liquid, with each phase considered to be a fluid [17, 25, 39–41]. Applying
conservation of mass and momentum for each fluid phase then enables the mechanics of
each fluid, and interactions between phases, to be taken into account. Similar multi-phase
models have been used in other biological contexts, for example the crawling of individual
cells [42], tissue engineering [43–45], and tumour growth [46]. Of particular interest to
the problem of a spreading biofilm is the model of Ward and King [47], who treat a
bacterial biofilm as a multi-phase mixture of cells and water. They then apply appropriate
thin-film limits to derive a model for the early-time spread of a bacterial colony immersed
in a nutrient-rich liquid culture medium. A recent paper by Srinivasan, Kaplan, and
Mahadevan [48] adopts a similar approach. In their work, the substratum supplies nutrients
to the biofilm, and they assume that expansion is driven by osmotic swelling and nutrient
availability. They then compare mathematical model predictions with experiments.

Although Srinivasan, Kaplan, and Mahadevan [48] consider the effect of ECM mechanics
and nutrient-limitation, their model assumes strong adhesion between the biofilm and
substratum. As a result, flow is driven by osmotic stress and a large pressure that must
be balanced with a comparatively large surface tension. In contrast, the sliding motility
mechanism hypothesised for S. cerevisiae involves increased cell surface hydrophobicity,
and hence weak adhesion between the biofilm and agar. The extensional flow approach of
Ward and King [47] has closer relevance to sliding motility, but in their model the biofilm
is immersed in a nutrient-rich liquid culture medium. This is unlike S. cerevisiae mats,
which receive nutrients from the agar substratum; their ability to spread therefore depends
on the supply of a depleting nutrient, which is also relevant to biofilm growth in nature or
in a human host [49]. Ward and King [47] also only consider early biofilm development,
and thus neglect the production of ECM, which becomes important on the time scale of
our experiments. Furthermore, multi-phase fluid models have also only previously been
applied to bacterial biofilms, rather than the fungal biofilms considered here. Based on
these considerations, in this work, we aim to extend the multi-phase fluid model of Ward
and King [47], to model S. cerevisiae mat formation experiments.

2 Mathematical model

We consider growth of a yeast biofilm in cylindrical co-ordinates (r, θ, z), and assume
radial symmetry from the outset. The biofilm occupies the region 0 < r < S(t) and
0 < z < h(r, t), where the leading edge of the biofilm S(t) is termed the contact line, and
h(r, t) represents the free upper surface of the biofilm. We define Hb and Rb to be the
characteristic height and radius of biofilm growth respectively. The biofilm grows on a
substratum, which has depth Hs and is assumed rigid. A sketch of the problem domain,
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which closely resembles that of Ward and King [47], is shown in Figure 2.1.

Substratum z = −Hs

z

Rb

Free surface z = h(r,t)

r

Hb
 S(t)

Mixture of cells and ECM

Figure 2.1: A vertical slice through the centre of the biofilm and substratum.

We adopt a macroscopic continuum model, and treat the biofilm as a mixture of two
viscous fluid phases. These comprise a living cell phase denoted with the subscript n, and
an ECM phase denoted with the subscript m. We define the volume fractions of living
cells and ECM to be φn(r, z, t) and φm(r, z, t) respectively, and assume that the mixture
contains no voids, that is

φn + φm = 1. (2.1)

In defining these volume fractions, we note that it is not possible for both species to
occupy the same space simultaneously. Throughout this work, we implicitly assume that
an appropriate averaging process has taken place, and do not discuss the details here. We
direct the reader to the paper by Drew [50] for further information.

A novelty of our approach is that unlike many previous models, we incorporate the
effect of nutrient limitation in addition to biofilm mechanics. To enable this, we define
gs(r, z, t) defined for −Hs < z < 0, to be the nutrient concentration in the substratum,
and gb(r, z, t) defined for 0 < z < h(r, t) and 0 < r < S(t), to be the nutrient concentration
in the biofilm. After deriving the governing equations, we impose the initial and boundary
conditions required to close the model in §2.2. Nutrients can enter the biofilm across
the biofilm–substratum interface, at which point they become available for consumption
by the cells. This, combined with boundary conditions for the fluid flow, completes our
description of sliding motility in biofilms.

2.1 Governing equations

We derive the governing equations of our general model using conservation of mass and
momentum. For the mass balances, we assume that the density of each fluid phase is
constant, and that the mass flux of each phase is entirely advective. The mass balance
equations then read

∂φα

∂t
+ 1
r

∂

∂r
(rurαφα) + ∂

∂z
(uzαφα) = Jα, (2.2)
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where uα = (urα, uzα) for α = n,m, are the fluid velocities. The Jα terms represent the
net volumetric source of phase α. For these terms, we adapt the bilinear forms used in
Tam et al. [5] to include cell death. Assuming that dead cells immediately become part of
the ECM, we write

Jn = ψnφngb − ψdφn, Jm = ψmφngb + ψdφn, (2.3)

where ψn is the cell production rate, ψm is the ECM production rate, and ψd is the cell
death rate, all of which are constant. In (2.3), cell death is proportional to cell density
only, while production of both living cells and ECM increases with local cell density and
nutrient concentration. This is consistent with experimental observations, which show
that cellular components and ECM are both formed by catabolism of cellular synthesised
glucose [51]. Despite not being considered here, our model also retains the possibility of
incorporating more complicated mechanisms, for example ECM production regulated by
quorum sensing [40].

We assume that nutrients disperse by diffusion in the substratum, and by both diffusion
and advection with extracellular fluid inside the biofilm. As in Tam et al. [5], we assume
that the rate at which nutrients are consumed is proportional to the local density of cells
and nutrients. The mass balance equations for the nutrients in the substratum and biofilm
respectively then read

∂gs

∂t
= Ds

[
1
r

∂

∂r

(
r
∂gs

∂r

)
+ ∂2gs

∂z2

]
, (2.4)

∂gb

∂t
+ 1
r

∂

∂r
[rurm (1− φn) gb] + ∂

∂z
[uzm (1− φn) gb] = Db

[
1
r

∂

∂r

(
r
∂gb

∂r

)
+ ∂2gb

∂z2

]
− ηφngb,

(2.5)
where Ds and Db are the nutrient diffusivities in the substratum and biofilm respectively,
and η is the maximum nutrient consumption rate.

Since the biofilm spreads as a unit in sliding motility, we follow O’Dea, Waters, and
Byrne [43] and assume strong interphase drag between the cells and the ECM, so that
both phases move with the same velocity un = um = u. Then, for simplicity, we assume
that the cells and ECM have the same dynamic viscosity µ, so effectively the mixture can
be treated as a single viscous fluid. We denote the stress tensor for the mixture by σ,
and since inertial effects are negligible (Re� 1) on the time and length scales of biofilm
growth, it satisfies the momentum balance equation

∇ · σ = 0. (2.6)

Owing to cell proliferation and death, and ECM production, the stress components for
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the mixture will include terms involving ∇ · u, which commonly vanish. In cylindrical
geometry, the relevant components of the stress tensor are

σrr = −p− 2µ
3 ∇ · u+ 2µ ∂ur

∂r
, σrz = σzr = µ

(
∂ur

∂z
+ ∂uz

∂r

)
,

σθθ = −p− 2µ
3 ∇ · u+ 2µ

r
ur, σzz = −p− 2µ

3 ∇ · u+ 2 ∂uz

∂z
.

(2.7)

where p is the pressure [52]. Note that we have invoked Stokes’ hypothesis, giving the
standard coefficient −2µ/3 for the divergence terms in (2.7) [47, 53, 54]. Substituting (2.7)
into (2.6), we find the momentum balances in the r and z directions respectively are

− ∂p

∂r
+ 2µ

r

∂

∂r

(
r
∂ur

∂r

)
− 2µ

3
∂

∂r

[
1
r

∂

∂r
(rur) + ∂uz

∂z

]
+ µ

∂

∂z

(
∂uz

∂r
+ ∂ur

∂z

)
− 2µ
r2 ur = 0,

(2.8a)

− ∂p

∂z
+ 2µ ∂2uz

∂z2 −
2µ
3

∂

∂z

[
1
r

∂

∂r
(rur) + ∂uz

∂z

]
+ µ

r

∂

∂r

[
r

(
∂ur

∂z
+ ∂uz

∂r

)]
= 0. (2.8b)

Given appropriate initial and boundary conditions, these momentum balance equations
(2.8), together with the mass balance equations (2.2), (2.4) and (2.5), define a closed system
of governing equations for the fluid pressure, fluid velocity, and nutrient concentrations.

2.2 Initial and boundary conditions

To close the system of governing equations, we require initial and boundary conditions
for all of the physical variables. When constructing the general model, we will leave the
initial conditions arbitrary. We obtain the first boundary condition by noting that nutrient
cannot pass through the base of the substratum. Assuming that the substratum is rigid,
the no-flux condition is

∂gs

∂z
= 0, on z = −Hs. (2.9)

On the biofilm–substratum interface, we assume that the nutrient flux is proportional to
the local concentration difference, and impose that fluid cannot pass through the interface.
We then have

Ds
∂gs

∂z
= −Q (gs − gb) , Db

∂gb

∂z
= −Q (gs − gb) , uz = 0 on z = 0. (2.10)

In equations (2.10), the constant Q is the nutrient mass transfer coefficient, which indicates
the permeability of the biofilm. To obtain a condition for the fluid velocity on the
biofilm–substratum interface, we use the hypothesis that sliding motility increases surface
hydrophobicity, causing weak adhesion between the biofilm and substratum [6]. To model
this, we impose zero tangential stress on the biofilm–substratum interface instead of the
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more common no-slip condition. The boundary condition reads

t̂ · (φασ · n̂) = ∂ur

∂z
+ ∂uz

∂r
= 0 on z = 0, (2.11)

where t̂ is any unit tangent vector, and n̂ is the unit outward normal vector.
For the boundary conditions on the free surface, we first observe that nutrient cannot

pass through the biofilm–air interface. This yields the no-flux condition

(gbφmum −Db∇gb) · n̂ = 0 on z = h. (2.12)

On each fluid phase we also impose the kinematic condition

∂h

∂t
+ ur

∂h

∂r
= uz on z = h, (2.13)

which states that fluid particles on the free surface must remain there. Finally, we obtain
stress boundary conditions by noting that a free surface is subject to zero tangential stress,
and normal stress that is proportional to its local curvature. In general, these conditions
read

t̂ · (φασ · n̂) = 0, n̂ · (φασ · n̂) = −γκ on z = h, (2.14)

where γ is the surface tension coefficient, and κ = ∇ · n̂, for the free surface normal vector
n̂ = (−hr, 1) / (1 + h2

r)
−1/2 (where subscripts here denote partial differentiation), is the

mean free surface curvature. This completes the boundary conditions associated with the
model.

3 Extensional flow thin-film approximation

In this section, we use a thin-film approximation to obtain a simplified approximation to
the model derived in §2. A key observation is that the radius of a biofilm significantly
exceeds both its height and the depth of the substratum. This allows us to assume that the
aspect ratio Hs/Rb = ε� 1, as well as Hb/Rb = O (ε) . In §3.1, we nondimensionalise the
governing equations with this in mind. The choice of scaling regime depends on the physics
most relevant to the problem. For sliding motility in which surface tension is reduced
[6], it is appropriate to model the biofilm as an extensional flow, which was considered
by Ward and King [47]. In §3.2 and §3.3 we adopt this approach, and use a thin-film
approximation to simplify the governing equations and boundary conditions considerably.
We then propose parameter values and source terms in §3.4, yielding a one-dimensional
axisymmetric model that we can compare with experimental results.
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3.1 Scaling and nondimensionalisation

To nondimensionalise the equations, we use the initial biofilm radius, Rb, as the length
scale, and scale time by the cell production rate, ψn, and initial nutrient concentration, G.
The scaled variables are (where hats denote dimensionless quantities)

(r, z) = (Rbr̂, εRbẑ), (ur, uz) = (ψnGRbûr, εψnGRbûz),

t = t̂

ψnG
, gs = Gĝs, gb = Gĝb, p = ψnGµp̂.

(3.1)

Under this scaling, the governing equations (2.2), (2.4), (2.5) and (2.8) become, after
dropping hats and eliminating φm by summing (2.2) over both phases and applying (2.1),

1
r

∂

∂r
(rur) + ∂uz

∂z
= (1 + Ψm)φngb, (3.2a)

∂φn

∂t
+ 1
r

∂

∂r
(rurφn) + ∂

∂z
(uzφn) = φngb −Ψdφn, (3.2b)

∂gs

∂t
= D

[
1
r

∂

∂r

(
r
∂gs

∂r

)
+ 1
ε2

∂2gs

∂z2

]
, (3.2c)

Pe
{
∂gb

∂t
+ 1
r

∂

∂r
[rur (1− φn) gb] + ∂

∂z
[uz (1− φn) gb]

}
= 1
r

∂

∂r

(
r
∂gb

∂r

)
+ 1
ε2

∂2gb

∂z2 −Υφngb,

(3.2d)

− ∂p

∂r
+ 2
r

∂

∂r

(
r
∂ur

∂r

)
− 2

3
∂

∂r

[
1
r

∂

∂r
(rur) + ∂uz

∂z

]
+ ∂

∂z

(
∂uz

∂r
+ 1
ε2

∂ur

∂z

)
− 2ur
r2 = 0, (3.2e)

− ∂p

∂z
+ 2 ∂2uz

∂z2 −
2
3
∂

∂z

[
1
r

∂

∂r
(rur) + ∂uz

∂z

]
+ 1
r

∂

∂r

[
r

(
∂ur

∂z
+ ε2 ∂uz

∂r

)]
= 0, (3.2f)

where we have introduced the dimensionless constants

Ψm = ψm
ψn

, Ψd = ψdG

ψn
, D = Ds

ψnGR2
b

, Pe = ψnGR
2
b

Db

, and Υ = ηR2
b

Db

. (3.3)

In (3.3), Ψm and Ψd are the dimensionless ECM production and cell death rates respectively.
The parameter D is the coefficient of diffusion for nutrients in the substratum, scaled by
the cell production rate and biofilm radius. The Péclet number, Pe, is the ratio of the
rates of advective transport to diffusive transport within the biofilm. The parameter Υ is
the dimensionless nutrient consumption rate. We scale Υ differently to the corresponding
term in Ward and King [47]. In their model, the biofilm was immersed in a nutrient-rich
liquid culture medium, and hence they balanced nutrient consumption with diffusion in
the z-direction. In contrast, S. cerevisiae mats grow on a nutrient-limited thin substratum,
making it appropriate to balance nutrient consumption with the temporal derivative and
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in-plane advection and diffusion.
Applying the same scaling (3.1), the dimensionless boundary conditions are

∂gs

∂z
= 0, on z = −1, (3.4a)

∂gs

∂z
= −ε2Qs (gs − gb) ,

∂gb

∂z
= −ε2Qb (gs − gb) on z = 0, (3.4b)

∂ur

∂z
+ ε2 ∂uz

∂r
= 0, on z = 0, (3.4c)

uz = 0 on z = 0, uz = ∂h

∂t
+ ur

∂h

∂r
on z = h, (3.4d)

Pe
[
gb (1− φn)

(
ur

∂h

∂r
− uz

)]
= ∂gb

∂r

∂h

∂r
− 1
ε2

∂gb

∂z
on z = h, (3.4e)

−2 ∂h

∂r

(
∂ur

∂r
− ∂uz

∂z

)
+ 1
ε2

∂ur

∂z
+ ∂uz

∂r
−
(
∂h

∂r

)2 (
ε2 ∂uz

∂r
+ ∂ur

∂z

)
= 0 on z = h, (3.4f)

−p+ 2
ε2

(
∂h

∂r

)2

+ 1
−1 ε2

(
∂h

∂r

)2
∂ur

∂r
− ∂h

∂r

(
∂ur

∂z
+ ε2 ∂uz

∂r

)
+ ∂uz

∂z


−2

3

[
1
r

∂

∂r
(rur) + ∂uz

∂z

]
= −γ∗κ∗ on z = h,

(3.4g)

where κ∗ is the dimensionless mean free surface curvature. The dimensionless parameters,

Qs = QRb

εDs

, Qb = QRb

εDb

, and γ∗ = εγ

ψnGRbµ
, (3.5)

are all assumed to be O(1). The mass transfer parameters Qs and Qb are the nutrient
depletion rate (from the substratum), and nutrient uptake rate (by the biofilm) respectively.
The dimensionless surface tension coefficient (or inverse capillary number), γ∗, is the ratio
of surface tension forces to viscous forces. Equations (3.2), and the boundary conditions
(3.4), then complete the dimensionless extensional flow model, on which we apply the
thin-film reduction.

3.2 Thin-film equations

We now use a thin-film approximation to simplify the dimensionless extensional flow model
derived in §3.1. This involves expanding the dependent variables in powers of ε2,

h(r, t) ∼ h0(r, t) + ε2h1(r, t) +O
(
ε4
)
, (3.6a)

φn(r, z, t) ∼ φn0(r, z, t) + ε2φn1(r, z, t) +O
(
ε4
)
, (3.6b)
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and so on, where series for p, ur, uz, gs, and gb take the same form as (3.6b). Substituting
(3.6) into the dimensionless governing equations (3.2), at leading order we obtain

1
r

∂

∂r
(rur0) + ∂uz0

∂z
= (1 + Ψm)φn0gb0, (3.7a)

∂φn0

∂t
+ 1
r

∂

∂r
(rφn0ur0) + ∂

∂z
(φn0uz0) = φn0gb0 −Ψdφn0, (3.7b)

∂2gs0

∂z2 = ∂2gb0
∂z2 = 0, (3.7c)

∂2ur0

∂z2 = 0, (3.7d)

− ∂p0

∂z
+ 1

3
∂

∂z

[
1
r

∂

∂r
(rur0) + ∂uz0

∂z

]
+ ∂2uz0

∂z2 = 0. (3.7e)

These are subject to the leading order boundary conditions

∂gs0

∂z
= 0 on z = −1, 0, and ∂gb0

∂z
= 0 on z = 0, h0, (3.8a)

∂ur0

∂z
= 0 on z = 0, h0, and uz0 = 0 on z = 0, (3.8b)

∂h0

∂t
+ ur0

∂h0

∂r
= uz0 on z = h0, (3.8c)

− p0 −
2
3r

∂

∂r
(rur0) + 4

3
∂uz0

∂z
= γ∗

r

∂

∂r

(
r
∂h0

∂r

)
on z = h0, (3.8d)

where the rightmost term in (3.8d) incorporates κ∗ = ∇2h0, which is the leading order
local free surface curvature.

Equations (3.7c) and (3.7d) and the associated boundary conditions (3.8a) and (3.8b)
demonstrate that gs0, gb0, and ur0 are independent of z, as is characteristic of extensional
flows. In a similar way to, for example King and Oliver [55], we exploit this by integrating
the governing equations with respect to z across the biofilm depth to derive a one-
dimensional closed system of equations for the leading order variables. First, we introduce
the depth-averaged cell volume fraction

φ̄n0 = 1
h0

∫ h0

0
φn0 dz. (3.9)

Integration of (3.7a) and (3.7b) with respect to z then yields, after application of Leibniz’s
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integral rule in (3.7b),

∂h0

∂t
+ 1
r

∂

∂r
(rur0h0) = (1 + Ψm) φ̄n0gb0h0, (3.10a)

∂

∂t

(
φ̄n0h0

)
+ 1
r

∂

∂r

(
rur0φ̄n0h0

)
=
(
φ̄n0gb0 −Ψdφ̄n0

)
h0, (3.10b)

where subtracting (3.10a) from (3.10b) gives

∂φ̄n0

∂t
+ ur0

∂φ̄n0

∂r
= φ̄n0

[
gb0 −Ψd − (1 + Ψm) φ̄n0gb0

]
. (3.11)

To obtain equations for the leading order nutrient concentrations, we need to consider
the higher order correction terms to the governing equations (3.2c) and (3.2d). Upon
substituting the expansions (3.6), the O(1) balances are

∂2gs1

∂z2 = 1
D

∂gs0

∂t
− 1
r

∂

∂r

(
r
∂gs0

∂r

)
, (3.12a)

∂2gb1
∂z2 = Pe

{
∂gb0
∂t

+ 1
r

∂

∂r
[rur0(1− φn0)gb0] + ∂

∂z
[uz0(1− φn0)gb0]

}

− 1
r

∂

∂r

(
r
∂gb0
∂r

)
+ Υφn0gb0.

(3.12b)

Using (3.4a), (3.4b) and (3.4e), we can also obtain higher order corrections to the boundary
conditions, giving

∂gs1

∂z
= 0 on z = −1, (3.13a)

∂gs1

∂z
= −Qs (gs0 − gb0) , ∂gb1

∂z
= −Qb (gs0 − gb0) on z = 0, (3.13b)

∂gb1
∂z

= ∂gb0
∂r

∂h0

∂r
− Pegb0 (1− φn0)

(
ur0

∂h0

∂r
− uz0

)
on z = h0. (3.13c)

Integrating (3.12a) and (3.12b) with respect to z across the substratum and biofilm depth
respectively, and applying the boundary conditions (3.13), we obtain

∂gs0

∂t
= D

[
1
r

∂

∂r

(
r
∂gs0

∂r

)
−Qs (gs0 − gb0)

]
, (3.14a)

Pe
{
h0

∂gb0
∂t

+ 1
r

∂

∂r

[
rur0

(
1− φ̄n0

)
gb0h0

]}
= 1
r

∂

∂r

(
rh0

∂gb0
∂r

)
+Qb (gs0 − gb0)−Υφ̄n0gb0h0,

(3.14b)
for 0 < r < S(t). We also need to take into account that the nutrient concentration in the
substratum can be non-zero outside of the biofilm domain. Outside of the biofilm, the
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nutrient will disperse via diffusion only, and therefore the mass balance equation outside
of the biofilm is

∂gs0

∂t
= D

r

∂

∂r

(
r
∂gs0

∂r

)
, on S(t) < r < R, (3.15)

where R = Rp/Rb, and Rp is the radius of the Petri dish. We then seek a solution for gs0

such that the nutrient concentration and its first spatial derivative are both continuous at
the contact line. Equations (3.14) and (3.15) then constitute the leading order nutrient
balance equations for our thin-film model.

Finally, we consider the higher order correction term in the radial momentum equation
(3.2e) to obtain equations for the leading order radial velocity. Using the conservation of
mass equation (3.2a) to simplify, the relevant term is

∂2ur1

∂z2 = ∂p0

∂r
+ 2

3 (1 + Ψm) ∂

∂r
(φn0gb0)− 2

r

∂

∂r

(
r
∂ur0

∂r

)
− ∂

∂r

(
∂uz0

∂z

)
+ 2ur0

r2 (3.16)

Similarly, the higher order corrections to the boundary conditions (3.4c) and (3.4f) are

∂ur1

∂z
= 0, on z = 0, ∂ur1

∂z
= 2 ∂h0

∂r

(
∂ur0

∂r
− ∂uz0

∂z

)
− ∂uz0

∂r
on z = h0,

(3.17)
To evaluate (3.16), we need to solve for the pressure p0. As ur0 is independent of z,
integration of (3.7e) with respect to z yields, after applying (3.8d) and using (3.7a),

p0 = 4
3 (1 + Ψm)φn0gb0 −

2
r

∂

∂r
(rur0)− γ∗

r

∂

∂r

(
r
∂h0

∂r

)
. (3.18)

Now, integrating (3.16) with respect to z across the biofilm depth, and applying the
boundary conditions (3.8c) and (3.17), we obtain

4 ∂

∂r

[
h0

r

∂

∂r
(rur0)

]
− 2ur0

r

∂h0

∂r
= 2 (1 + Ψm) ∂

∂r

(
φ̄n0gb0h0

)
− γ∗h0

∂

∂r

[
1
r

∂

∂r

(
r
∂h0

∂r

)]
.

(3.19)
The equations (3.10a), (3.11), (3.14), (3.15) and (3.19) then form a closed system for the
leading order biofilm height, (depth-averaged) cell volume fraction, nutrient concentrations,
and radial fluid velocity. These equations form our one-dimensional, thin-film extensional
flow model.

3.3 Initial and boundary conditions

We use experimental observations to propose initial and boundary conditions for the
one-dimensional axisymmetric model. The experiments and procedure used in this work
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are described in Tam et al. [5]. In the experiments, the Petri dish is initially filled
uniformly with nutrient, and a small droplet containing cells and fluid is inoculated in the
centre of the dish using a pipette. The fluid in the droplet is rapidly absorbed into the
agar substratum, leaving a thin layer of cells, which we assume adopts a parabolic profile.
Experiments of C. albicans show that extracellular material only emerges in mature biofilm
[56], hence we assume the biofilm is initially made up of cells only. Appropriate initial
conditions are therefore

S(0) = 1, h0(r, 0) = H0
(
1− r2

)
, φ̄n0(r, 0) = 1, gs0(r, 0) = 1, gb0(r, 0) = 0,

(3.20)
where H0 is the initial biofilm height, which we expect to be O(ε). In specifying (3.20), we
note that we have chosen the characteristic length scales to be the initial biofilm height
and radius, and scale both nutrient concentrations by the initial concentration in the
substratum.

For the boundary conditions, we first assume that the biofilm and nutrient concentration
are radially symmetric, and that the centre of the biofilm is fixed. This yields the conditions

∂h0

∂r

∣∣∣∣∣
(0,t)

= 0, ∂φ̄n0

∂r

∣∣∣∣∣
(0,t)

= 0, ∂gs0

∂r

∣∣∣∣∣
(0,t)

= 0, ∂gb0
∂r

∣∣∣∣∣
(0,t)

= 0, ur0(0, t) = 0. (3.21)

In addition, we know that the contact line position S(t) evolves according to the local
fluid velocity, that is

dS
dt = ur0 (S(t), t) . (3.22)

To close the one-dimensional axisymmetric model, we now require an additional
boundary condition for each of the nutrient concentrations, and the fluid velocity. For the
nutrient concentration in the substratum, it is natural to impose the no-flux condition

∂gs0

∂r

∣∣∣∣∣
(R,t)

= 0 (3.23)

at the boundary of the Petri dish. Regarding the nutrient concentration in the biofilm,
we note that the leading edge of the biofilm is rounded by a meniscus, where the height
changes over a region in r with O(ε) size [57]. This meniscus is not captured under the
original thin-film scaling. With this in mind, close to the contact line we consider a
re-scaling of the original variables,

(r, z) =
(
S(t) + εRbr

†, εRbz
†
)
, (ur0, uz0) =

(
εψnGRbur

†
0, εψnGRbuz

†
0

)
. (3.24)

With this scaling, the leading order balance for the flux boundary condition (2.12) becomes
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(dropping daggers)
∂gb0
∂z

= ∂gb0
∂r

∂h0

∂r
on z = h0. (3.25)

At the contact line, the left-hand side of (3.25) vanishes due to (3.8a), and in general h0

can depend on r. The boundary condition on the biofilm nutrient concentration is therefore

∂gb0
∂r

∣∣∣∣∣
(S(t),t)

= 0. (3.26)

To close the momentum equation (3.19), we impose that the biofilm experiences zero radial
stress at the contact line, that is σrr (S(t), t) = 0. Using (3.18) to eliminate the pressure,
we find that

σrr = 4 ∂ur0

∂r
+ 2ur0

r
− 2 (1 + Ψm)φn0gb0 + γ∗

r

∂

∂r

(
r
∂h0

∂r

)
. (3.27)

Integrating (3.27) over the biofilm depth, or noting that φ̄n0 → φn as h → 0, we then
obtain

4 ∂ur0

∂r
+ 2ur0

r
= 2 (1 + Ψm) φ̄n0gb0 −

γ∗

r

∂

∂r

(
r
∂h0

∂r

)
, on (r, t) = (S(t), t) . (3.28)

The equations (3.10a), (3.11), (3.14), (3.15) and (3.19), together with the initial con-
ditions (3.20) and boundary conditions (3.21)–(3.23), (3.26) and (3.28), form a closed
one-dimensional axisymmetric model for leading order variables. From here onwards, we
drop zero subscripts on leading order terms for convenience.

3.4 Parameters

To obtain a set of parameters to use when comparing the model with S. cerevisiae mat
formation experiments, we require estimates for all dimensional quantities in (3.1), (3.3)
and (3.5). To assist with this, we first set Ψm = 1/9 to ensure that φn → 0.9, as is
consistent with experimental observation. For comparison purposes, we also set Ψd = 0,
as cell death rate is difficult to measure, and images from the end of the experiments
show that the proportion of dead cells is low. Furthermore, as reduced surface tension is a
characteristic of sliding motility [6], we initially consider γ∗ = 0. The experimental design
then enables us to estimate all other dimensional parameters, with the exception of ψn
and η, which we subsequently fit to experimental data. We then obtain the dimensionless
parameters listed in Table 3.1. Further details on how each was estimated are available in
the electronic supplementary material. The parameter T corresponds to the dimensionless
time taken to complete the experiment, and informs the time domain in numerical solutions
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Parameter Value Source Parameter Value Source
H0 0.1 Assumption D 4.34 [58, 59]
Ψm 0.111 Observation Pe 0.953 [60]
Ψd 0 Observation Υ 3.15 Experimental data
R 14.4 Experimental design Qb 8.65 [61]
T 15.9 Experimental data Qs 2.09 [61]
γ∗ 0 Assumption

Table 3.1: Dimensionless parameters for a yeast (S. cerevisiae) biofilm.

to the model. We note that all constants in the right-hand column are O(1), which justifies
the scaling regime employed in the thin-film model.

4 Results and discussion

In this section, we compare the thin-film extensional flow model derived in §3 with
experimental data, and then investigate the dependence of the parameters on the speed
of biofilm expansion. To achieve this, we undertake the numerical solution of (3.10a),
(3.11), (3.14), (3.15) and (3.19) on r ∈ [0, R], and t ∈ [0, T ], subject to (3.20)–(3.23),
(3.26) and (3.28) in §4.1. Doing so with the parameters in Table 3.1 confirms that sliding
motility can reproduce experimental results. In §4.2 and 4.3, we then vary the parameters,
including cell death rate and surface tension coefficient, to predict the expansion speed
and biofilm shape in different conditions.

4.1 Numerical solutions and comparison with experiments

We use a front-fixing method [62] to solve the one-dimensional axisymmetric model. This
involves introducing the new variables

ξ = r

S(t) , and ξo = r − S(t)
R− S(t) , (4.1)

so that the biofilm always inhabits ξ ∈ [0, 1], and the interval ξo ∈ [0, 1] represents the
remainder of the Petri dish not occupied by the biofilm. We then use a Crank–Nicolson
scheme to discretise the model. For all nonlinear terms, we linearise using data from the
previous time step. At each time step, we solve the governing equations in the same order
as they are derived in §3.2. When solving for the nutrient concentration in the substratum,
we use data from the previous time step as an initial guess for gs (S, t) at the current time
step. We then solve both (3.14a) and (3.15), and use Newton’s method to correct the
initial guess, and ensure that the first spatial derivative of gs is continuous at r = S(t),
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which corresponds to ξ = 1 and ξo = 0. We compute solutions using an equispaced grid
with ∆ξ = ∆ξo = 1.25× 10−4 and ∆t ≈ 1× 10−4, which ensures adequate convergence
with grid spacing and time step size. Further details on the numerical method are provided
in the electronic supplementary material.

We compute solutions for the parameters given in Table 3.1 to facilitate comparison
with experiments. There is good agreement between the numerical contact line position
and the measured radius of the S. cerevisiae mats, as shown in Figure 4.1a. Unlike
the reaction–diffusion model of Tam et al. [5], Figure 4.1b shows that the extensional
flow model produces a non-constant expansion speed. The velocity profile resembles the
experimental B. subtilis biofilms of Srinivasan, Kaplan, and Mahadevan [48], featuring
an initial period of acceleration followed by a deceleration. A likely explanation of the
acceleration observed early in biofilm growth is that cells initially proliferate in nutrient-rich
conditions. With abundant nutrients, both existing and newly-produced cells are able to
proliferate, accelerating expansion. However, as time passes nutrients become depleted in
the centre of the colony, as Figures 4.1c and 4.1d show. When this occurs, cell proliferation
is mostly confined to the leading edge (see Figure 4.1f), which slows the expansion of
the colony. This phenomenon also dictates the shape a biofilm attains as it expands. As
Figure 4.1e shows, our model predicts that the biofilm will expand vertically and radially
when nutrients are abundant. When nutrients deplete and growth is concentrated near
the leading edge, the biofilm stops thickening and can only expand radially. The model
even predicts that the height at the centre of the biofilm will begin to decrease slightly, as
the advection of mass with the fluid exceeds the net production rate.

4.2 The effect of model parameters on biofilm size

In §4.1, we considered one set of parameters relevant to the S. cerevisiae mat formation
experiments. However, biofilms can grow in vastly different ways depending on the
microbial species and environmental conditions. To predict biofilm growth by sliding
motility in a range of experimental conditions, we compute numerical solutions for five
days of growth. For each set of solutions, we use the default parameters given in Table 3.1,
and vary one parameter at a time over a realistic range. This allows us to isolate the effect
of each parameter on biofilm size, and consequently expansion speed. Of the dimensionless
parameters, we found that the Petri dish size R and surface tension coefficient γ∗ had
negligible effect on the biofilm size. Results for other dimensionless parameters and the
cell production rate, ψn, are shown in Figure 4.2. A vast range of behaviour is possible
while keeping dimensionless parameters within one order of unity.

Figures 4.2a and 4.2b describe how fluid production and cell death affect expansion
speed. As expected, higher rates of fluid (either living cells or ECM) production result
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Figure 4.1: Numerical solution and comparison with experimental data. (a) Comparison
of numerical contact line position (dashed curve) with experimental data. Dots indicate
the mean data, and error bars indicate the experimental range. (b) Instantaneous biofilm
expansion speed ur(S(t), t). (c) Nutrient concentration in the substratum, gs(r, t). (d)
Nutrient concentration in the biofilm gb(r, t). (e) Biofilm height h(r, t). (f) Net fluid
production, J = (1 + Ψm) φ̄ngbh. Figures (c)–(f) are plotted for t ∈ [0, 15.9], and r ∈
[0, 14.4], at ten equispaced time intervals. Dashed curves represent initial conditions, and
arrows indicate the direction of increasing time.
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Figure 4.2: The effect of parameters on biofilm radius, S(T ), where for each solution T is
the dimensionless time corresponding to five days. The initial conditions are (3.20), and
parameters (excepting T ) where held constant are given in Table 3.1.
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in larger biofilms. However, unlike the production of ECM, the production of new cells
facilitates increased cell proliferation in the future, and therefore cell production rate is a
stronger determinant of size than ECM production rate. This verifies that expansion in
sliding motility is mostly driven by cell proliferation. In addition, Figure 4.2b shows that
increasing the cell death rate decreases biofilm size, which is expected as fewer living cells
are subsequently available to proliferate.

The remaining plots in Figure 4.2 show how the dimensionless parameters affect
expansion speed. The effect of nutrient movement and consumption is revealed in Fig-
ure 4.2c. Increasing the nutrient diffusion coefficient D will result in more uniform nutrient
concentrations across the Petri dish than seen in Figure 4.1c and 4.1d. This promotes
thickening of the biofilm as opposed to radial expansion. In addition, increasing the
nutrient consumption rate Υ results in larger quantities of nutrient being required to
produce a new cell, thereby slowing expansion. Although the Péclet number Pe does
not significantly affect expansion speed, larger values imply increased advection of cells
and nutrients towards the biofilm edge, which increases expansion speed. Figure 4.2d
illustrates the effect of the nutrient depletion and uptake rates. Larger values of nutrient
depletion rate Qs decrease nutrient access to the cells, which slows expansion. Conversely,
increasing nutrient uptake rate Qb aids cell production, as more nutrients become available
for consumption. A common theme in all of these results is that expansion speed depends
on the ability of cells close to the leading edge to consume nutrient and proliferate. The
results presented here are relevant to clinical settings, where expansion speed correlates
with the invasiveness of infection. Our model describes environmental conditions that
result in decreased expansion speed.

4.3 Predicting biofilm shape: ridge formation and surface tension

In addition to the size, our model also predicts the shape a growing biofilm will attain.
Although not observed in S. cerevisiae mat formation experiments, some bacterial biofilms
[48] and yeast colony biofilms [51] develop a ridge structure close to the leading edge.
To observe ridge formation in our model, we compute a numerical solution with the
experimental parameters given in Table 3.1, except with D = 1.5, Υ = 10, and Pe = 10.
Compared to the experimental parameters, this combination of decreased nutrient diffusion,
and increased nutrient consumption and advection leads to faster nutrient depletion behind
the proliferating rim. Cell proliferation then becomes concentrated close to the leading
edge, which in conjunction with increased advection of mass outwards from the biofilm
centre, creates the noticeable ridge seen in Figure 4.3a. To quantify ridge formation, we
compute the normalised ridge height Ir(t) = (max h(r, t))/h(0, t) in the new numerical
solution, and compare with the experimental case. Figure 4.3b shows the normalised ridge
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Figure 4.3: The solution with D = 1.5, Υ = 10, and Pe = 10, with other parameters as in
Table 3.1.

height increasing faster than the base solution with experimental parameters. Although
we do not investigate the mechanisms of ridge formation in detail, our model shows that
interplay between sliding motility and nutrient-limited growth can initiate ridge formation.
Importantly, this can occur without the need to invoke other mechanisms such as osmotic
swelling or mechanical blistering.

Finally, we investigate the effect that non-zero surface tension would have on the
biofilm shape. We achieve this by computing numerical solutions with the parameters as
in Figure 4.3, while varying the surface tension coefficient over the range γ∗ ∈ [0, 2]. These
results are shown in Figure 4.4. We observe that increasing the surface tension coefficient
reduces the extent of the ridge, and that γ∗ = 2 is sufficient to prevent ridge formation.
As surface tension appears only in the momentum equation (3.19) and boundary condition
(3.28), we expect the fluid velocity profile to explain this behaviour. Figure 4.4c shows that
increasing γ∗ decreases the radial velocity near the centre of the biofilm. This decreases
movement of fluid and nutrients towards the leading edge of the biofilm, thereby inhibiting
ridge formation.
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Figure 4.4: Solutions illustrating how surface tension affects ridge formation. The pa-
rameters (excepting γ∗) are as in Figure 4.3, and plotted for γ∗ ∈ [0, 2], at increments of
γ∗ = 0.2.
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5 Summary
In this paper, we developed a mathematical model to better understand how mechanics
affect yeast biofilm expansion. We were particularly interested in the role of sliding motility
and nutrient limitation, features hypothesised to be relevant to mat formation experiments
of the budding yeast S. cerevisiae. To investigate this, we derived a general multi-phase
model for biofilm expansion, treating the biofilm as a mixture of living cells and extracellular
fluid. We systematically reduced the model to a one-dimensional axisymmetric form by
employing an extensional flow thin-film reduction. By computing numerical solutions,
we showed that the thin-film model could reproduce the expansion speed of S. cerevisiae
mat biofilms. We then confirmed the hypothesis that cell production rate is the strongest
determinant of biofilm size in sliding motility. By varying model parameters, we showed
that increasing the ability for cells close to the leading edge to consume nutrients and
proliferate promotes faster expansion. This can be achieved by decreasing the nutrient
diffusion, consumption, and depletion rates, by or increasing nutrient uptake rate. Finally,
we showed that sliding motility is a possible explanation for the ridge formation observed
in bacterial or yeast colony biofilms. We found that surface tension slows the movement of
cells and nutrients towards the biofilm rim, and thus inhibits ridge formation. Our model
confirms that sliding motility is a plausible mechanism for yeast biofilm expansion, and
offers a way of quantitatively predicting biofilm growth for other microbial species and
environmental conditions.

In addition to these results, our model offers an opportunity to study further biological
questions. For example, there are potential links between the characteristic floral mor-
phology of S. cerevisiae mats and the stability of solutions to azimuthal perturbations.
This provides one avenue for further investigation. Depending on the desired application,
the general model also retains the possibility of investigating different mechanisms. For
example, the model could be re-scaled to investigate expansion driven by strong adhesion
and increased surface tension, rather than sliding motility. The model can also incorporate
more complicated cell production mechanisms, for example ECM production regulated by
quorum sensing. It is also possible to include more complicated mechanical behaviour, for
example the viscoelastic rheology of biofilms, the effect of substratum elasticity, or the
possibility of expansion by osmotic swelling. We intend to tackle some of these scenarios
in future work, to shed further light on the mechanisms governing biofilm expansion.
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A Parameter estimation

To obtain appropriate values for the parameters listed in Table 3.1, we require estimates
for all dimensional quantities in (3.1), (3.3) and (3.5). In lieu of an accurate experimental
measurement, we will assume that the thin-film parameter ε = 0.1. This is the same value
used in the extensional flow model of Ward and King [47], and signifies that the biofilm
thickness is an order of magnitude smaller than its radius. Accordingly, we also assume
the initial biofilm height is H0 = 0.1.

The experimental design also enables us to estimate several parameters. For example,
the mean initial biofilm radius across the thirteen experiments in Tam et al. [5] was
Rb = 2.875 mm. The radius of the medium on which the biofilms were grown was 41.5 mm
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[21], giving R = 14.4. We use the physical properties of glucose to estimate parameters
related to the nutrients. Using the same method as Tam et al. [5], we estimate the
diffusion coefficient of glucose in agar to be Ds = 4.01× 10−2 mm2 ·min−1 [58, 59]. For
the mass transfer coefficient of nutrients within the biofilm, we cite Vicente et al. [61], who
estimate the mass transfer coefficient of glucose in a yeast (S. cerevisiae) floc to be Q =
2.92× 10−3 mm ·min−1. Stewart [60] conducted a review of experimental measurements
of diffusivity in biofilms of different bacterial and fungal species. They found that the
average effective diffusivity of glucose in a microbial biofilm was 0.24Daq, where Daq =
4.04× 10−2 mm2 ·min−1 is the diffusivity of glucose in water [59]. Thus, a suitable estimate
is Db = 9.70× 10−3 mm2 ·min−1. This is of the same order of magnitude as an estimate
for colony of S. cerevisiae, which Vicente et al. [61] give as Db = 6.6× 10−3 mm2 ·min−1.

The cell production rate ψn and nutrient consumption rate η are chosen to minimise
the sum of squared differences between numerical solutions and the experimental data.
We found that the combination of ψn = 12.1 mm2 · g−1 ·min−1 and η = 3.7× 10−3 min−1

produced a local minimum in the error, and therefore we adopted these as our parameter
estimates. At the same time, we estimate the ECM production rate ψm using the
experimental observation that extracellular material occupies approximately 10% of mature
S. cerevisiae mats by volume, and therefore assume Ψm = 1/9. This is now sufficient to
determine representative values for all of the dimensionless parameters in Table 3.1.

B Numerical method

As mentioned in §4.1, before solving the 1D radial model numerically, we apply the change
of variables (4.1) to map both the biofilm and unoccupied Petri dish domains to the unit
interval. The governing equations to solve then become

∂h
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dS
dt = ur (1, t) , (B.1g)

where gso denotes the nutrient concentration in the region of the substratum that is not
occupied by the biofilm. Under the change of variables (4.1), the initial conditions are

S(0) = 1, h(ξ, 0) = H0
(
1− ξ2

)
, φ̄n(ξ, 0) = 1,

gs(ξ, 0) = gso(ξo, 0) = 1, gb(ξ, 0) = 0,
(B.2)

the boundary conditions become
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= 0,

4
S

∂ur

∂ξ
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+ 2ur(1, t)
S
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γ∗

S2
∂

∂ξ

(
ξ
∂h

∂ξ
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,

(B.3)

and we must also satisfy the continuity conditions

gs (1, t) = gso (0, t) , 1
S

∂gs

∂ξ

∣∣∣∣∣
(1,t)

= 1
R− S

∂gso
∂ξo

∣∣∣∣∣
(0,t)

. (B.4)

Producing a numerical solution to the 1D axisymmetric extensional flow model then
requires solving the system (B.1), subject to (B.2)–(B.4), on ξ ∈ [0, 1], ξo ∈ [0, 1], and
t ∈ [0, T ].

We solve the model on equispaced grids in time and space. For the time domain, we
denote the discrete grid points by tk = (k−1)∆t, for k = 1, . . . , Nt, where ∆t = T/(Nt−1).
For both the biofilm and outer Petri dish domains, we define ξj = (j − 1)∆ξ and
ξoj = (j − 1)∆ξo for j = 1, . . . , Nξ, where ∆ξ = 1/(Nξ − 1) and ∆ξo = 1/(Nξo − 1), to
represent the discrete grid points. After prescribing the initial conditions, we first solve
(B.1f) to determine the initial fluid velocity. Following this, at each time step we solve the
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equations in the order listed in (B.1), until the final time tNt = T is reached.

We discretise the governing equations using a finite difference Crank–Nicolson scheme.
Where necessary, we linearise nonlinear terms using data from the previous time step. In
the equations for h and ur, we first expand relevant derivative terms using the product
rule before discretising the equations. At the interior grid points j = 2, . . . Nξ − 1, the
numerical scheme then reads

hkj − hk−1
j

∆t +
urk−1

j − ξjurk−1
Nξ

Sk−1

 h
k−1/2
j+1 − hk−1/2

j−1

2∆ξ

+
(
ur

k−1
j+1 − urk−1

j−1

2Sk−1∆ξ +
ur

k−1
j

Sk−1ξj

)
h
k−1/2
j = (1 + Ψm) φ̄nk−1

j gb
k−1
j h

k−1/2
j ,

(B.5a)
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(B.5b)

gs
k
j − gsk−1

j

∆t −

ξjurk−1
Nξ

Sk−1

 gs
k−1/2
j+1 − gsk−1/2

j−1

2∆ξ

= D

(Sk−1)2 ξj

(ξj+1 + ξj)
(
gs
k−1/2
j+1 − gsk−1/2

j

)
2 (∆ξ)2


− D

(Sk−1)2 ξj

(ξj + ξj−1)
(
gs
k−1/2
j − gsk−1/2

j−1

)
2 (∆ξ)2


−DQs

(
gs
k−1/2
j − gbk−1

j

)
,

(B.5c)
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(B.5d)
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Sk − Sk−1

∆t = ur
k−1/2
Nξ

, (B.5g)

where we approximate terms at the half time points using

h
k−1/2
j =

hkj + hk−1
j

2 , (B.6)

and so on. In (B.5f), Γkj denotes the discretised surface tension term, which we discuss in
detail later. In conjunction with appropriate boundary schemes, each equation in (B.5)
describes a linear system to solve for the variables at t = tk.

We need to take particular care at domain boundaries to prevent spurious oscillations
appearing in the solution. At ξ = 0 and ξo = 0, we obtained the best results by substituting
the boundary conditions into discretised forms of the equations (B.1c) and (B.1e), using
one-sided differences for first derivative terms and introducing fictitious grid points for
second derivative terms. For (B.1a), (B.1b), (B.1d) and (B.1f) we apply the relevant
boundary conditions explicitly. Although the equations (B.1c) and (B.1e) are singular at
ξ = 0, we can use L’Hôpital’s rule to evaluate the relevant terms as ξ → 0. The boundary
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schemes are then
−3hk1 + 4hk2 − hk3

2∆ξ = 0, (B.7a)
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2∆ξ = 0, (B.7b)
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1 = a, (B.7d)
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(B.7e)

ur
k
1 = 0, (B.7f)

where a is the value of gs(S(t), t). At ξ = 1 and ξo = 1, we solve the equations (B.1a),
(B.1b) and (B.1d) directly, again using one-sided differences for first derivatives and
introducing fictitious grid points for second derivatives. We apply the Dirichlet condition
for gs, and as (B.1e) is singular as h→ 0, we impose the boundary condition for gb directly
using a one-sided difference. We also obtained best results by apply the zero radial stress
condition directly at ξ = 1. The boundary schemes are then
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2
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k
Nξ
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where ΓkNξ is the contribution of surface tension to the no radial stress boundary condition
in (B.3).

For the surface tension terms, we expand the derivative terms and write

Γkj =
hkj

(Sk)2
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1
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, for j = 2, . . . Nξ − 1, (B.9a)
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To compute the first spatial derivative of h, we use standard sixth-order accurate finite
difference formulae. We then use the same scheme to compute the higher derivatives
sequentially, that is

∂2h

∂ξ2 = ∂

∂ξ

(
∂h

∂ξ

)
, and ∂3h
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∂ξ

[
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(
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)]
, (B.10)

where we represent differentiation operators with the finite difference scheme. When
γ∗ 6= 0, we required a larger number of time steps to produce solutions without spurious
oscillations in the surface tension term. Therefore, all solutions involving surface tension
were computed with Nξ = 1001 and Nt = 2000001. The convergence analysis in §B.1
suggests that this will produce solutions that are accurate to approximately 0.4% relative
error.

A feature of our model is that finding the nutrient concentration in the substratum
requires solving both (B.1c) and (B.1d), and ensuring that the continuity conditions (B.4)
are satisfied. To do this, we first solve (B.1c) and (B.1d), in both cases assuming the
Dirichlet conditions gs(1, tk) = gso(0, tk) = a, with a = gs(1, tk−1), as an initial guess. To
ensure continuity of the derivative, we define and compute

f(a) = 1
R− S

∂gso
∂ξo

∣∣∣∣∣
(0,t)
− 1
S

∂gs

∂ξ

∣∣∣∣∣
(1,t)

, (B.11)

for the initial guess of a, with both derivatives in (B.11) approximated using second-order
one-sided finite differences. We then use Newton’s method to drive f(a) to zero, where we
approximate the required derivative numerically using

df
da = f(a+ δ)− f(a)

δ
, (B.12)
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for δ = 1× 10−6, and iterate until a is accurate to 1× 10−6. This procedure allows us to
solve for gs over the entire Petri dish domain at each time step.

B.1 Convergence of the numerical method

The numerical solutions in §4.1 were computed using Nξ = 8001 grid points and Nt =
160001 time steps, giving ∆ξ = 1.25 × 10−4 and ∆t ≈ 1 × 10−4. To verify that this is
sufficient to produce a converged solution, we repeated the computation using a range of
grid spacings and time step sizes. In each case, we computed the contact line position at
t = 15.9, which yielded the results shown in Figure B.1. The numerical scheme exhibits

0 0.5 1
·10−3

13.12

13.14

13.16

∆ξ

S
(T

)

∆t ≈ 1× 10−4

(a) Numerical results for ∆t ≈ 1× 10−4,
and ∆ξ → 0.

0 0.2 0.4 0.6 0.8 1
·10−3

13.17

13.169

13.168

∆t

S
(T

)

∆ξ = 1.25× 10−4

(b) Numerical results for ∆ξ = 1.25×10−4,
and ∆t→ 0.

Figure B.1: Convergence of the numerical scheme for the axisymmetric extensional flow
model. At each data point, we plot the biofilm radius attained at the experimental time
t = T.

linear convergence with both grid spacing and time step size. By fitting a straight line
to the data in Figure B.1 and extrapolating, we can estimate the numerical contact
line position in the zero grid spacing and time step limit. Doing so, we find that when
∆t ≈ 1× 10−4, the estimated contact line position as ∆ξ → 0 is S(T ) = 13.1752. When
∆ξ = 1.25× 10−4, the estimated contact line position as ∆t→ 0 is S(T ) = 13.1678. As
these are within approximately 0.05% of each other and the numerical value for the chosen
grid spacing and time step size, S(T ) = 13.1681, we conclude that our numerical solution
is sufficiently converged.
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