conda activate qiime2-2020.2
cd 2019_SHNW_Gut/R1
qiime tools import \
--type SampleData[SequencesWithQuality] \
--input-path ../reads/R1 \
--input-format CasavaOneEightSingleLanePerSampleDirFmt \
--output-path demux-r1.qza
qiime demux summarize \
--i-data demux-r1.qza \
--o-visualization demux-r1.qzv
-Minimum: 1
-Median: 128215.0
-Mean: 139647.62886597938
-Maximum: 593954
-Total: 13545820
qiime deblur denoise-16S \
--i-demultiplexed-seqs demux-r1.qza \
--p-trim-length 150 \
--p-sample-stats \
--o-representative-sequences SHNW-gut-rep-seqs.qza \
--o-table SHNW-gut-table.qza \
--o-stats SHNW-gut-deblur-stats.qza \
--verbose \
--p-jobs-to-start 6
qiime feature-table tabulate-seqs \
--i-data SHNW-gut-rep-seqs.qza \
--o-visualization SHNW-gut-rep-seqs.qzv
qiime feature-table summarize \
--i-table SHNW-gut-table.qza \
--o-visualization SHNW-gut-table.qzv
Number of samples 92
Number of features 8,483
Total frequency 7,740,835
Frequency
Minimum frequency 6.0
1st quartile 50,267.0
Median frequency 77,491.0
3rd quartile 113,561.25
Maximum frequency 349,258.0
Mean frequency 84,139.51086956522
K15 10013
E4-EBC4 155
E3-EBC3 154
E6-EBC6 93
E9-EBC9 72
E8-EBC8 43
B12 42
E5-EBC5 23
W15 10
E1-EBC1 6
Frequency # of Samples Observed In
3c44df3672100a011a334b67eea24366 279,556 83
dadb874cf55015dada2a22cc32c1eda9 221,891 82
6234321dd90179936aa89249d23d256d 165,345 78
ac57d463deafd198f817244255e80019 137,292 77
8c6accdc08a5bcbdd15cc07420d92e2e 123,096 81
qiime feature-classifier classify-sklearn \
--i-reads SHNW-gut-rep-seqs.qza \
--i-classifier silva-132-99-515-806-nb-classifier.qza \
--o-classification SHNW-gut-SILVA-132.qza \
--p-n-jobs 24
qiime metadata tabulate \
--m-input-file SHNW-gut-SILVA-132.qza \
--o-visualization SHNW-gut-SILVA-132.qzv
qiime fragment-insertion sepp \
--i-representative-sequences SHNW-gut-rep-seqs.qza \
--i-reference-database sepp-refs-silva-128.qza \
--o-tree SHNW-gut-sepp-tree.qza \
--o-placements SHNW-gut-sepp-placements.qza \
--verbose \
--p-threads 24
qiime fragment-insertion filter-features \
--i-table SHNW-gut-table.qza \
--i-tree SHNW-gut-sepp-tree.qza \
--o-filtered-table SHNW-gut-filtered_table.qza \
--o-removed-table SHNW-gut-removed_table.qza \
--verbose
qiime feature-table summarize \
--i-table SHNW-gut-removed_table.qza \
--o-visualization SHNW-gut-removed_table.qzv
qiime diversity alpha-rarefaction \
--i-table SHNW-gut-table.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--o-visualization SHNW-gut-table-rarefaction.qzv \
--p-min-depth 500 \
--p-max-depth 50000
qiime feature-table filter-samples \
--i-table SHNW-gut-table.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "SampleType IN ('Soil', 'Control')" \
--p-exclude-ids \
--o-filtered-table SHNW-gut-table-no-soil.qza
qiime feature-table filter-samples \
--i-table SHNW-gut-table-no-soil.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-min-frequency 25129 \
--o-filtered-table SHNW-gut-table-no-soil-at-least-25129-reads.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-no-soil-at-least-25129-reads.qza \
--o-visualization SHNW-gut-table-no-soil-at-least-25129-reads.qzv
Ksoil 57671
Bsoil 44302
Wsoil 33548
M10b 11363
K15 10013
E4-EBC4 155
E3-EBC3 154
E6-EBC6 93
E9-EBC9 72
E8-EBC8 43
B12 42
E5-EBC5 23
W15 10
E1-EBC1 6
qiime taxa barplot \
--i-table SHNW-gut-table-no-soil-at-least-25129-reads.qza \
--i-taxonomy SILVA132.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--o-visualization SHNW-gut-table-no-soil-at-least-25129-reads-BARPLOT-PER-SAMPLE.qzv
Outlier:
Joey:
Same individuals sampled from multiple days samples:
Contaminated sample:
qiime feature-table filter-samples \
--i-table SHNW-gut-table-no-soil-at-least-25129-reads.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "name IN ('B10', 'B11', 'B13', 'B14', 'B15', 'B16', 'B17', 'M7b', 'M6', 'M14', 'M1b', 'M1c', 'M3b', 'M4b', 'M9b')" \
--p-exclude-ids \
--o-filtered-table SHNW-gut-table-final.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final.qza \
--o-visualization SHNW-gut-table-final.qzv
qiime taxa barplot \
--i-table SHNW-gut-table-final.qza \
--i-taxonomy SILVA132.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--o-visualization SHNW-gut-table-final-BARPLOT-PER-SAMPLE.qzv
qiime feature-table group \
--i-table SHNW-gut-table-final.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Population \
--p-mode mean-ceiling \
--p-axis sample \
--o-grouped-table SHNW-gut-table-final-POPULATION.qza
qiime taxa barplot \
--i-table SHNW-gut-table-final-POPULATION.qza \
--i-taxonomy SILVA132.qza \
--m-metadata-file SHNW_2019_Gut_Metadata_PPN.txt \
--o-visualization SHNW-gut-table-final-POPULATION-BARPLOT.qzv
qiime diversity core-metrics-phylogenetic \
--i-table SHNW-gut-table-final.qza \
--i-phylogeny SHNW-gut-sepp-tree.qza \
--p-sampling-depth 36346 \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--output-dir SHNW-gut-Core-metrics-final-filtered-table-36346
for i in SHNW-gut-Core-metrics-final-filtered-table-36346/*vector.qza; do qiime diversity alpha-group-significance --i-alpha-diversity $i --m-metadata-file SHNW_2019_Gut_Metadata.txt --o-visualization ${i/.qza/.qzv}; done
qiime diversity beta-group-significance \
--i-distance-matrix SHNW-gut-Core-metrics-final-filtered-table-36346/unweighted_unifrac_distance_matrix.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Captive \
--o-visualization SHNW-gut-Core-metrics-final-filtered-table-36346/unweighted_unifrac_PERMANOVA.qzv \
--p-method permanova \
--p-pairwise
qiime diversity beta-group-significance \
--i-distance-matrix SHNW-gut-Core-metrics-final-filtered-table-36346/weighted_unifrac_distance_matrix.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Captive \
--o-visualization SHNW-gut-Core-metrics-final-filtered-table-36346/weighted_unifrac_PERMANOVA.qzv \
--p-method permanova \
--p-pairwise
qiime feature-table filter-features \
--i-table SHNW-gut-table-final.qza \
--o-filtered-table SHNW-gut-table-final-FILTERED-ANCOM-ms8-mf500.qza \
--p-min-samples 8 \
--p-min-frequency 500
qiime feature-table summarize \
--i-table SHNW-gut-table-final-FILTERED-ANCOM-ms8-mf500.qza \
--o-visualization SHNW-gut-table-final-FILTERED-ANCOM-ms8-mf500.qzv
qiime composition add-pseudocount \
--i-table SHNW-gut-table-final-FILTERED-ANCOM-ms8-mf500.qza \
--o-composition-table SHNW-gut-table-final-FILTERED-ANCOM-ms8-mf500-pseudo.qza
qiime composition ancom \
--i-table SHNW-gut-table-final-FILTERED-ANCOM-ms8-mf500-pseudo.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Captive \
--o-visualization SHNW-gut-table-final-FILTERED-ANCOM-ms8-mf500-pseudo-CAPTIVE.qzv
qiime taxa collapse \
--i-table SHNW-gut-table-final.qza \
--i-taxonomy SHNW-gut-SILVA-132.qza \
--p-level 5 \
--o-collapsed-table SHNW-gut-table-final-FAMILY.qza
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-FAMILY.qza \
--o-filtered-table SHNW-gut-table-final-FAMILY-FILTERED-ANCOM-ms8-mf500.qza \
--p-min-samples 8 \
--p-min-frequency 500
qiime composition add-pseudocount \
--i-table SHNW-gut-table-final-FAMILY-FILTERED-ANCOM-ms8-mf500.qza \
--o-composition-table SHNW-gut-table-final-FAMILY-FILTERED-ANCOM-ms8-mf500-pseudo.qza
qiime composition ancom \
--i-table SHNW-gut-table-final-FAMILY-FILTERED-ANCOM-ms8-mf500-pseudo.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Captive \
--o-visualization SHNW-gut-table-final-FAMILY-FILTERED-ANCOM-ms8-mf500-pseudo-CAPTIVE.qzv
qiime feature-table filter-samples \
--i-table SHNW-gut-table-final.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "[Captive]='Yes'" \
--o-filtered-table SHNW-gut-table-final-CAPTIVEonly.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-CAPTIVEonly.qza \
--o-visualization SHNW-gut-table-final-CAPTIVEonly.qzv
qiime feature-table filter-samples \
--i-table SHNW-gut-table-final.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "[Captive]='No'" \
--o-filtered-table SHNW-gut-table-final-WILDonly.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly.qza \
--o-visualization SHNW-gut-table-final-WILDonly.qzv
qiime tools export \
--input-path table-final-CAPTIVEonly.qza \
--output-path table-final-CAPTIVEonly.biom
biom convert -i table-final-CAPTIVEonly.biom/feature-table.biom -o table-final-CAPTIVEonly.biom/feature-table.tsv --to-tsv
qiime feature-table filter-samples \
--i-table SHNW-gut-table.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "SampleType IN ('Control')" \
--o-filtered-table SHNW-gut-table-EBCs-ONLY.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-EBCs-ONLY.qza \
--o-visualization SHNW-gut-table-EBCs-ONLY.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-CAPTIVEonly.qza \
--o-filtered-table SHNW-gut-table-final-CAPTIVEonly-ms3-mf200.qza \
--p-min-samples 3 \
--p-min-frequency 200
qiime feature-table summarize \
--i-table SHNW-gut-table-final-CAPTIVEonly-ms3-mf200.qza \
--o-visualization SHNW-gut-table-final-CAPTIVEonly-ms3-mf200.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly.qza \
--o-filtered-table SHNW-gut-table-final-WILDonly-ms3-mf750.qza \
--p-min-samples 3 \
--p-min-frequency 750
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-ms3-mf750.qza \
--o-visualization SHNW-gut-table-final-WILDonly-ms3-mf750.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly.qza \
--m-metadata-file WILD-only.txt \
--o-filtered-table SHNW-gut-table-final-WILDonly-WILD-SPECIFIC.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-WILD-SPECIFIC.qza \
--o-visualization SHNW-gut-table-final-WILDonly-WILD-SPECIFIC.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-CAPTIVEonly.qza \
--m-metadata-file CAPTIVE-only.txt \
--o-filtered-table SHNW-gut-table-final-CAPTIVEonly-CAPTIVE-SPECIFIC.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-CAPTIVEonly-CAPTIVE-SPECIFIC.qza \
--o-visualization SHNW-gut-table-final-CAPTIVEonly-CAPTIVE-SPECIFIC.qzv
qiime feature-table core-features \
--i-table SHNW-gut-table-final-WILDonly-ms3-mf750.qza \
--o-visualization SHNW-gut-table-final-WILDonly-ms3-mf750-CORE-FEATURES.qzv
qiime feature-table core-features \
--i-table SHNW-gut-table-final-CAPTIVEonly-ms3-mf200.qza \
--o-visualization SHNW-gut-table-final-CAPTIVEonly-ms3-mf20-CORE-FEATURES.qzv
qiime feature-table merge \
--i-tables SHNW-gut-table-final-CAPTIVEonly-ms3-mf200.qza SHNW-gut-table-final-WILDonly-ms3-mf750.qza \
--o-merged-table SHNW-gut-table-final-FILTERED-MERGED.qza
qiime feature-table core-features \
--i-table SHNW-gut-table-final-FILTERED-MERGED.qza \
--o-visualization SHNW-gut-table-final-FILTERED-MERGED-CORE-FEATURES.qzv
for i in *.tsv; do awk '{print $1}' $i > ${i/.tsv/-FEATURES.tsv}; done
for i in *.tsv; do sed -i'' 's/Feature/feature id/g' $i; done
for i in *ALL*.tsv; do qiime feature-table filter-features --i-table SHNW-gut-table-final-FILTERED-MERGED.qza --m-metadata-file $i --o-filtered-table ${i/.tsv/.qza}; done
for i in *captive*.tsv; do qiime feature-table filter-features --i-table SHNW-gut-table-final-CAPTIVEonly-ms3-mf200.qza --m-metadata-file $i --o-filtered-table ${i/.tsv/.qza}; done
for i in *WILD*.tsv; do qiime feature-table filter-features --i-table SHNW-gut-table-final-WILDonly-ms3-mf750.qza --m-metadata-file $i --o-filtered-table ${i/.tsv/.qza}; done
for i in *FEATURE*.qza; do qiime feature-table summarize --i-table $i --o-visualization ${i/.qza/.qzv}; done
qiime diversity core-metrics-phylogenetic \
--i-table SHNW-gut-table-final-WILDonly.qza \
--i-phylogeny SHNW-gut-sepp-tree.qza \
--p-sampling-depth 36346 \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--output-dir SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly
for i in SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly/*vector.qza; do qiime diversity alpha-group-significance --i-alpha-diversity $i --m-metadata-file SHNW_2019_Gut_Metadata.txt --o-visualization ${i/.qza/.qzv}; done
qiime diversity beta-group-significance \
--i-distance-matrix SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly/unweighted_unifrac_distance_matrix.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Population \
--o-visualization SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly/unweighted_unifrac_PERMANOVA.qzv \
--p-method permanova \
--p-pairwise
qiime diversity beta-group-significance \
--i-distance-matrix SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly/weighted_unifrac_distance_matrix.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Population \
--o-visualization SHNW-gut-Core-metrics-final-filtered-table-36346-WILDonly/weighted_unifrac_PERMANOVA.qzv \
--p-method permanova \
--p-pairwise
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly.qza \
--o-filtered-table SHNW-gut-table-final-WILDonly-FILTERED-ANCOM-ms8-mf500.qza \
--p-min-samples 8 \
--p-min-frequency 500
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-FILTERED-ANCOM-ms8-mf500.qza \
--o-visualization SHNW-gut-table-final-WILDonly-FILTERED-ANCOM-ms8-mf500.qzv
qiime composition add-pseudocount \
--i-table SHNW-gut-table-final-WILDonly-FILTERED-ANCOM-ms8-mf500.qza \
--o-composition-table SHNW-gut-table-final-WILDonly-FILTERED-ANCOM-ms8-mf500-pseudo.qza
qiime composition ancom \
--i-table SHNW-gut-table-final-WILDonly-FILTERED-ANCOM-ms8-mf500-pseudo.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Population \
--o-visualization SHNW-gut-table-final-WILDonly-FILTERED-ANCOM-ms8-mf500-pseudo-POPULATION.qzv
qiime taxa collapse \
--i-table SHNW-gut-table-final-WILDonly.qza \
--i-taxonomy SHNW-gut-SILVA-132.qza \
--p-level 5 \
--o-collapsed-table SHNW-gut-table-final-WILDonly-FAMILY.qza
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-FAMILY.qza \
--o-filtered-table SHNW-gut-table-final-WILDonly-FAMILY-FILTERED-ANCOM-ms8-mf500.qza \
--p-min-samples 8 \
--p-min-frequency 500
qiime composition add-pseudocount \
--i-table SHNW-gut-table-final-WILDonly-FAMILY-FILTERED-ANCOM-ms8-mf500.qza \
--o-composition-table SHNW-gut-table-final-WILDonly-FAMILY-FILTERED-ANCOM-ms8-mf500-pseudo.qza
qiime composition ancom \
--i-table SHNW-gut-table-final-WILDonly-FAMILY-FILTERED-ANCOM-ms8-mf500-pseudo.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--m-metadata-column Population \
--o-visualization SHNW-gut-table-final-WILDonly-FAMILY-FILTERED-ANCOM-ms8-mf500-pseudo-POPULATION.qzv
qiime feature-table filter-samples \
--i-table SHNW-gut-table-final-WILDonly.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "[Population]='Wonga'" \
--o-filtered-table SHNW-gut-table-final-WILDonly-Wonga.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Wonga.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Wonga.qzv
qiime feature-table filter-samples \
--i-table SHNW-gut-table-final-WILDonly.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "[Population]='Kooloola'" \
--o-filtered-table SHNW-gut-table-final-WILDonly-Kooloola.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Kooloola.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Kooloola.qzv
qiime feature-table filter-samples \
--i-table SHNW-gut-table-final-WILDonly.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "[Population]='Brookfield'" \
--o-filtered-table SHNW-gut-table-final-WILDonly-Brookfield.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Brookfield.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Brookfield.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-Brookfield.qza \
--o-filtered-table SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147.qza \
--p-min-samples 3 \
--p-min-frequency 147
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-Kooloola.qza \
--o-filtered-table SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245.qza \
--p-min-samples 3 \
--p-min-frequency 245
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-Wonga.qza \
--o-filtered-table SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361.qza \
--p-min-samples 3 \
--p-min-frequency 361
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361.qzv
qiime feature-table core-features \
--i-table SHNW-gut-table-no-soil-at-least-25129-reads-outliers-removed-WILDonly.qza \
--o-visualization SHNW-gut-table-no-soil-at-least-25129-reads-outliers-removed-WILDonly-CORE-FEATURES.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361.qza \
--m-metadata-file Wonga-only.txt \
--o-filtered-table SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361-WONGA-SPECIFIC.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361-WONGA-SPECIFIC.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361-WONGA-SPECIFIC.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245.qza \
--m-metadata-file Kooloola-only.txt \
--o-filtered-table SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245-KOOLOOLA-SPECIFIC.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245-KOOLOOLA-SPECIFIC.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245-KOOLOOLA-SPECIFIC.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147.qza \
--m-metadata-file Brookfield-only.txt \
--o-filtered-table SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147-BROOKFIELD-SPECIFIC.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147-BROOKFIELD-SPECIFIC.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147-BROOKFIELD-SPECIFIC.qzv
qiime feature-table merge \
--i-tables SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147.qza table-final-WILDonly-Kooloola-ms3-mf245.qza \
--o-merged-table SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola.qzv
qiime feature-table filter-features \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola.qza \
--m-metadata-file Kooloola-and-Brookfield-only.txt \
--o-filtered-table SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola-SPECIFIC.qza
qiime feature-table summarize \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola-SPECIFIC.qza \
--o-visualization SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola-SPECIFIC.qzv
qiime feature-table group \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola-SPECIFIC.qza \
--m-metadata-file SHNW_2019_Gut_Metadata_habitat.txt \
--m-metadata-column Habitat \
--p-mode mean-ceiling \
--p-axis sample \
--o-grouped-table SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola-SPECIFIC-COLLAPSED.qza
qiime feature-table group \
--i-table SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147-BROOKFIELD-SPECIFIC.qza \
--m-metadata-file SHNW_2019_Gut_Metadata_habitat.txt \
--m-metadata-column Population \
--p-mode mean-ceiling \
--p-axis sample \
--o-grouped-table SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147-BROOKFIELD-SPECIFIC-COLLAPSED.qza
qiime feature-table group \
--i-table SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245-KOOLOOLA-SPECIFIC.qza \
--m-metadata-file SHNW_2019_Gut_Metadata_habitat.txt \
--m-metadata-column Population \
--p-mode mean-ceiling \
--p-axis sample \
--o-grouped-table SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245-KOOLOOLA-SPECIFIC-COLLASPED.qza
qiime feature-table group \
--i-table SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361-WONGA-SPECIFIC.qza \
--m-metadata-file SHNW_2019_Gut_Metadata_habitat.txt \
--m-metadata-column Population \
--p-mode mean-ceiling \
--p-axis sample \
--o-grouped-table SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361-WONGA-SPECIFIC-COLLAPSED.qza
qiime feature-table merge \
--i-tables SHNW-gut-table-final-WILDonly-Wonga-ms3-mf361-WONGA-SPECIFIC-COLLAPSED.qza SHNW-gut-table-final-WILDonly-Kooloola-ms3-mf245-KOOLOOLA-SPECIFIC-COLLASPED.qza SHNW-gut-table-final-WILDonly-Brookfield-ms3-mf147-BROOKFIELD-SPECIFIC-COLLAPSED.qza SHNW-gut-table-final-WILDonly-Brookfield-AND-Kooloola-SPECIFIC-COLLAPSED.qza \
--o-merged-table SHNW-gut-table-final-WILDonly-POPULATION-SPECIFIC-COLLASPED.qza
qiime taxa barplot \
--i-table SHNW-gut-table-final-WILDonly-POPULATION-SPECIFIC-COLLASPED.qza \
--i-taxonomy SILVA132.qza \
--m-metadata-file SHNW_2019_Gut_Metadata_PPN.txt \
--o-visualization SHNW-gut-table-final-WILDonly-POPULATION-SPECIFIC-COLLASPED-BARPLOT.qzv
conda activate st2
Filter intial table; remove samples with <25,000 reads ('M10b', 'K15', 'B12', 'W15'), outlier samples ('B10', 'B11', 'B13', 'B14', 'B15', 'B16', 'B17', 'M7b', 'M6', 'M14'), and captive samples (Mx).
qiime feature-table filter-samples \
--i-table SHNW-gut-table.qza \
--m-metadata-file SHNW_2019_Gut_Metadata.txt \
--p-where "name IN ('B10', 'B11', 'B13', 'B14', 'B15', 'B16', 'B17', 'M7b', 'M6', 'M14', 'M10b', 'K15', 'B12', 'W15', 'M1a', 'M1b', 'M1c', 'M2', 'M3a', 'M3b', 'M4a', 'M4b', 'M5', 'M6', 'M7a', 'M7b', 'M8', 'M9a', 'M9b', 'M10a', 'M10b', 'M11', 'M12', 'M13', 'M14')" \
--p-exclude-ids \
--o-filtered-table SHNW-gut-table-for-st2.qza
qiime feature-table summarize \
--i-table tSHNW-gut-able-for-st2.qza \
--o-visualization SHNW-gut-table-for-st2.qzv
qiime tools export \
--input-path SHNW-gut-table-for-st2.qza \
--output-path SHNW-gut-table-for-st2.biom
sourcetracker2 gibbs \
-i SHNW-gut-table-for-st2.biom/feature-table.biom \
-m SHNW_2019_Gut_ST.txt \
-o ST-analysis
Answer: no, very minimal <0.0001 % coming from soils