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Fossil data 

We compiled dated and georeferenced fossil records for woolly mammoths (Mammuthus 

primigenius) during the Late Pleistocene and Holocene in Eurasia and North America. All 

records were sourced from publicly accessible databases and published literature. For each fossil 

we recorded information on its location, age and method used for dating, material dated and 

several other criteria (1). Because poor estimates of age can lead to erroneous inferences of the 

causes and consequences of past events (2), we assessed the age reliability of the mammoth 
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fossil record following the criteria devised by Barnosky and Lindsey (3). Records not meeting 

these criteria were removed from the database and not used for any further analysis. All reliable 

ages were calibrated using OxCal (4) and the IntCal13 calibration curve (5). Fossil data used in 

the analyses can be found in Appendix 3 of Fordham and Brown (1). The R code used to 

determine high-quality M. primigenius fossils can be found here: 

https://github.com/GlobalEcologyLab/Mammoth/tree/master/extras.  

To map the location of megafauna fossils in Eurasia that have been radiocarbon dated, we 

compiled dated and georeferenced fossil records for herbivorous Eurasian megafauna within the 

radiocarbon dating window from publicly accessible databases (6-10) and published literature 

(11). The database included many indicator species of M. primigenius, including (but not limited 

to) Equus sp., Ovibos pallantis, Bison priscus (12). Fossils were classified as coming from 

distinct sites if they were in different 0.05° × 0.05° grid cells. We then summed the number of 

distinct fossil collection sites in each 1° × 1° grid cell and mapped the density of fossil sites for 

the study region. The database, supporting code and metadata can be found here: 

https://github.com/GlobalEcologyLab/Mammoth/tree/master/extras. 

Climate data 

Monthly mean paleoclimate simulations were accessed using PaleoView (13) for the 

period 21,000 BP to the present. These paleoclimate simulations were generated by the 

Community Climate System Model Version 3 (CCSM3) (14-16); a global coupled atmosphere–

ocean–sea ice–land general circulation model (AOGCM) that has a latitude-longitude resolution 

of ~3.75° in the atmosphere (i.e., over land and sea) and ~3° in the ocean and includes a dynamic 

global-vegetation module. We used PaleoView to generate 30-year average estimates for 5 

climate variables every 25 years from 21,000 to 0 BP. These climate variables were: (i) average 

https://github.com/GlobalEcologyLab/Mammoth/tree/master/extras
https://github.com/GlobalEcologyLab/Mammoth/tree/master/extras
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minimum daily temperature in January; (ii) average maximum daily temperature in July; (iii) 

temperature seasonality (standard deviation [SD] mean monthly temperature × 100); (iv) average 

daily precipitation in Northern Hemisphere summer (JJA) and (v) across the entire year. We 

chose these climatic variables because they are frequently used to model the climatic niches of 

large herbivores in Eurasia (11, 17), and because they directly affect their population dynamics 

(18). In Eurasia, summer climatic conditions can affect the survival and fecundity of cold-

adapted herbivores, often through forage quality (19). This is because warmer summer 

temperatures increase plant productivity (20). While particularly harsh winter climates can 

increase the mortality of Artic grazers (21, 22). The spatial resolution of the climate data sets was 

resampled to a 1 × 1° resolution (23). Bilinear interpolation was purposefully chosen because it 

retains the integrity and limitations of the original model output data, where orography is highly 

smoothed relative to the real-world (24).  

To better capture the breadth of climatic conditions in the statistical models of climate 

suitability that mammoths can potentially persist in, we accessed paleoclimate simulations 

further back in time. To do this we used the Hadley Centre Climate AOGCM (HadCM3), which 

has a spatial resolution of 2.5° × 3.75° (latitude × longitude) (25). The temporal resolution of the 

HadCM3 data is coarse, with climate snapshot data being available every 2,000 years for the 

period 80,000 BP to 22,000 BP, and snapshots every 1,000 years for the period 21,000 BP to 0 

BP (25). We resampled climate snapshot data to a common 1 × 1° resolution (see above) for all 

climate snapshots between 60,000 BP and 21,000 BP.  

Since inter-model differences between AOGCMs can be large (26) we tested the 

consistency of 30-year average climatic projections centered on 21,000 BP and 20,000 BP. To do 

this we calculated the pattern correlation, root mean square error (RMSE) and area weighted 
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mean error (AWME) between projections (26). There was good agreement in the spatial pattern 

of model projections for the chosen climatic variables (|r| > 0.8) for the study region (1). The 

RMSE, and AWME between CCSM3 TraCE-21 and HadCM3 projections are shown in 

Appendix 4 of Fordham and Brown (1). We derived a correction factor for each variable, month, 

and grid cell in the HadCM3 using the differences between the TraCE-21 and the HadCM3 

estimates of 30-year average climate centered on 21,000 BP. The correction factor ensured that 

the HadCM3 and TraCE-21 projections of temperature and precipitation for the year 21,000 BP 

were aligned. To do this for temperature we used an additive correction, while for precipitation 

we used a multiplicative correction. The approach we employed is identical to bias correcting 

projections for differences between modelled and observed climate, making the fundamental 

assumption that even if there are differences in the absolute estimates of the models, changes 

produced by the models are correct (13). 

Matching climatic records with fossil-based inferences of past localities of M. 

primigenius prior to 21,000 BP avoided truncating climatic suitability in niche model projections 

(27), accounting for a potentially wider range of historical climatic conditions that M. 

primigenius could persist and thrive in. Comparisons of Outlying Mean Index (28) confirmed 

that climatic conditions at fossil sites prior to 21,000 BP were different and should be included in 

the analysis (OMI = 0.011 and 0.547, for the periods 60,000 to 21,000 BP and 21,000 to 0 BP, 

respectively). A lower OMI value prior to 21,000 BP suggests that climatic conditions were more 

typical of the climatic condition in Eurasia during this period. See below (Niche marginality and 

tolerance) for an explanation of OMI analysis. 

We restricted all demographic model simulations of M. primigenius population and range 

dynamics to the period from 21,000 BP because high temporal resolution paleoclimate 
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reconstructions are needed to directly model ecological and evolutionary responses to past 

climatic and environmental change (24). An alternate approach would have been to use a 

stochastic weather generator to produce a synthetic time series of weather data based on 

observed present day weather for each grid cell and apply it to each HadCM3 millennial climate 

snapshot (29). However, this assumes that time-averaged weather (i.e. climate variability) does 

not change over long periods of time, which is unlikely to be the case (30).  

Dynamic spatial structure 

Climate suitability was used to define the initial spatial structure of the process-explicit 

simulation model by considering the ecological niche of M. primigenius as an n-dimensional 

hypervolume (31) across time (32).  

Multi-temporal niche hypervolume 

We intersected climate projections for each georeferenced fossil for the period ± 1 SD 

around the estimated age of the fossil. Therefore, each fossil had a time series of climate data 

associated with it. Collectively, this represents the climate history over which M. primigenius 

were likely to have been present at the fossil sites (33). We constructed a multi-temporal 

hypervolume estimate of climate suitability by combining spatiotemporal climate information 

associated with georeferenced and aged fossils for Eurasia and North America (see above). We 

removed all duplicate climates associated with presences; in these instances, all climate 

parameters (mean daily rainfall variables rounded to two decimal places and mean daily 

temperature variables rounded to one decimal place) are the same.  

We tested for collinearity between climate variables and removed variables that were 

strongly correlated |r| > 0.7 (34), opting for variables that have well established biological 
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evidence for affecting the population dynamics of large herbivores in the northern-hemisphere 

(18), providing strong support for their inclusion in the niche hypervolume (31). The final set of 

predictor variables were: (i) average minimum daily temperature in January; (ii) average 

maximum daily temperature in July; (iii) average daily precipitation in summer.  

We measured the geometry of this 3-dimensional hypervolume with a box kernel and the 

Silverman bandwidth estimator using the R package ‘hypervolume’ (35, 36). The hypervolume 

was then checked for occupied and unoccupied hypervolume space as a potential indicator of 

unconsidered climate space (37). 

Niche marginality and tolerance 

To account for large uncertainties in the climatic conditions used by M. primigenius we 

exhaustively subsampled the multi-temporal hypervolume using Outlier Mean Index (OMI) 

analysis, focusing on measures of niche separation and niche breadth (28). These metrics 

measure the difference between the mean climate conditions in the niche sample and those in the 

full hypervolume (Marginality), and the variability of climatic conditions in the niche sample 

(Tolerance). 

We did this using the R package ‘ade4’ (38) and data used to construct the 3-dimensional 

hypervolume. In contrast to other ordination techniques, OMI does not make assumptions about 

the shape of the species’ response curves to the environment, and therefore has been applied 

widely in the study of climate niches of species (39, 40). Marginality is a measure of climatic 

specialisation, calculated using the distance between the climate conditions in the niche sample 

and the mean conditions of the total multi-temporal climate space. Niche samples with high 

marginality values occur in less common climates compared to the total multi-temporal climate 

space, while those with low values have non-marginal niches, occurring in climates that are 
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typical of multi-temporal climate space. Tolerance (or Breadth) provides an index of the 

variability of the climatic conditions in the niche sample. High tolerance values are associated 

with a wide niche breath and low tolerance values to small niche breadth.  

We calculated niche samples with non-overlapping as well as overlapping hypervolumes, 

ensuring that the edges of the hypervolume were well represented in the niche samples (36), 

sampling Marginality and Tolerance between bounds of 0.0001 – 21.45 and 0.042 – 2.10 (1), 

respectively. This sub-sampling process resulted in 1,862 potential subsets of the full multi-

temporal hypervolume (an approximation of the potential realized niche (32)), which we used to 

calibrate the bioclimatic envelope. This sub-sampling process, allowed the realized climatic 

niche for M. primigenius to be established using pattern-oriented methods (41). 

Modelling the bioclimatic envelope 

We created a bioclimatic envelope model (BEM) for M. primigenius using MaxEnt (42) 

and made spatial projections of climate suitability for the period from 21,000 to 0 BP at 25-year 

(generational; see below) time steps for the study region (1). Correlative approaches, which 

model the bioclimatic envelope of a species, assume that the distribution of a species is an 

unbiased spatial indicator of its ecological requirements (43). We used a standard maximum 

entropy method (42) to project climate suitability because it is computationally faster than the 

kernel density hypervolume method and produces similar results (44), because it has been shown 

to outperform many other BEMs (45), and because it is frequently applied to paleo contexts (23, 

46). Climates not associated with a fossil occurrence were treated as potential background points. 

The background extent was restricted to the study region (1). The number of background points 

was set at up to 10 times the number of presence points (47), based on the need for a background 

that is representative of the climatic conditions potentially accessible to the species (48). We 
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used 5-fold cross validation to set a threshold for species occurrence based on maximizing the 

sum of sensitivity and specificity (49). 

We assessed the cross-validated predictive capacity of the full multi-temporal BEM by 

training the model with an 80% random sample of the initial data and testing it against the 

remaining 20% of data. We did this 100 times and calculated the average area under the curve 

(AUC) of the receiver operation characteristic (ROC) and the true skill statistic (TSS). The 

results were: AUC = 0.998 and TSS = 0.971, indicating excellent predictive capacity (50).  

We generated separate MaxEnt BEM models for all subsamples of the hypervolume (see 

above). We checked that each sample had  20 fossil occurrence records (i.e., points with unique 

climates) (51). Doing this resulted in thousands of model projections (n = 1,862) of 

spatiotemporal change in climate suitability for mammoths from 21,000 to 0 BP at 25-year 

(generational) time steps for the Eurasian study region. 

Projections of climate suitability were scaled between 0 and 1 individually for each 

model following equation 1: 

𝑍𝑖 =
𝑥𝑖  −  𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
(1) 

Where xi = climate suitability at grid cell i at time i; min(x) = threshold for species occurrence 

based on maximizing the sum of sensitivity and specificity; and max (x) = maximum climate 

suitability for any grid cell at any point in time from 21,000 to 0 BP. 

Projections of climate suitability were then scaled to account for latitudinal variance in 

grid cell size and the proportion of the cell that is land and not ice at each time step based on sea 

ice and coastline reconstructions at 25 year time steps from 21,000 BP to the present day. These 

reconstructions came directly from the TraCE-21ka experiment, upon which PaleoView (13) is 

based.  



 

 

9 

 

Human density 

We modelled the peopling of Eurasia by Palaeolithic humans using the Climate Informed 

Population Genetics Model (CISGEM), where genetic history and local demography is informed 

by paleoclimatic and paleo-vegetation reconstructions of net primary productivity (NPP) (52), 

which has been shown to be a primary determinant of global hunter-gatherer population densities 

(53). The model has previously been shown to reconstruct arrival times of anatomically modern 

humans and current-day distributions of global and regional genetic diversity (52, 54). It 

simulates local effective population sizes (Ne) as a function of genetic history, local demography 

as well as primary productivity (52, 54). Like other numerical models of early human migration 

(55), arrival, occupancy, and density (here Ne) are forced by spatiotemporal estimates of climate 

and sea level changes over the past 125 thousand years. 

In CISGEM, the world is represented by a hexagonal grid, each cell approximately 100 

km wide. The potential number of people who can live in each cell (its carrying capacity) is 

determined by reconstructions of NPP done by coupling the HadCM3 paleoclimate model 

(described above) to the Miami vegetation model (56). Every 25 years (approximately the 

generation time of humans), the carrying capacity is updated to allow for changes in climate, as 

well as sea level and ice sheet extent. At each generation, any cell that is inhabited will grow 

with a rate r (until it reaches the local carrying capacity), sending out migrants to other inhabited 

cells at rate m, or colonists to previously uninhabited cells at rate c. The relationship between 

carrying capacity and NPP, as well as the values of other demographic parameters, were fitted 

using pattern-oriented methods (41) using an Approximate Bayesian Computation framework 

(57). Targets for model calibration were pairwise genetic differentiation among a large panel of 

modern-day human populations. In other words, the demography was calibrated to produce 
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realistic genetic differentiation patterns across the globe. Eriksson et al. provide a detailed 

description of CISGEM parameters and procedures (52). 

Based on the ABC fit, we took the best 4,000 parameter combinations and reconstructed 

population sizes through time, which were then used when modelling human impact on 

mammoth. For each grid cell of 1 × 1° resolution in Eurasia, we used CISGEM to calculate a 

time series of effective population size (Ne) from 21,000 BP to 0 BP at 25-year time steps, 

following a burn-in period of approximately 80 generations (2,000 years). To account for 

parameter uncertainty in spatiotemporal projections of Ne we ran 4,000 different models each 

using a unique combination of parameter settings (based on established upper and lower 

confidence bounds (52)) using Latin hypercube sampling (58). An upper plausible threshold for 

Ne was set at 500 individuals per grid-cell based on estimates of true abundance in modern-day 

hunter-gatherer societies (59). We calculated average Ne ± 1 SD for each time step at each grid 

cell and then generated 10,000 plausible reconstructions of human population abundance, by 

sampling within ± 1 SD of Ne using a triangular distribution (60). Stochasticity in human 

abundances is therefore the result of sampling established ranges for demographic parameters in 

CISGEM. 

Process-explicit mammoth model  

Bioclimatic envelope models of climate suitability and CISGEM estimates of human 

abundance were coupled with stochastic population models that capture extinction as well as 

colonization dynamics by simulating landscape-level population processes, including dispersal 

with source-sink dynamics. The model was coded in Program R and is available here: 

https://github.com/GlobalEcologyLab/Mammoth.  

https://github.com/GlobalEcologyLab/Mammoth
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Each grid cell was modelled with a scalar-type stochastic model, which simulates the 

finite rate of population increase “R”, its variance and the population carrying capacity (61). The 

approach has been shown to be superior at reconstructing the historical range dynamics of 

species compared to BEMs alone (62). The model was run at generational time steps (25 years, 

see below). 

Upper abundance 

The upper abundance of each cell was based on climate suitability (63). To convert 

climate suitability (scaled by latitude and land surface area) to upper abundance, we first 

assumed that the maximum area of suitable habitat in any given cell  2,443 km2 not 9,777.5 

km2. This approach appropriately addresses the mismatch between the spatial scale of the model 

and how M. primigenius are likely to have used the landscape (64). We set upper abundance at 

1.875 mammoths km2 and allowed it to vary, across models, at a rate of between 0.25 and 4 

animals km2. The lower estimate was taken from density estimates for African elephants (65) 

and the upper estimate is for a model previously published on mammoths (66). 

Population growth 

We used long-term population-dynamics time-series data to calculate finite rates of 

population increase and their variance (67). We fit a Ricker logistic function to a 13-year time 

series for African elephants (Loxodonta africana) in Tarangire National Park, Tanzania, from 

1993 to 2005 (68). This time series was chosen because the population was in a state of rebound 

after heavy poaching prior to 1993 (68). This provided a mean estimate of Rmax (lambda) of 

1.08 (at an annual time scale).  
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We scaled Rmax to the generation level by taking the exponent (1.0825) and treated this 

as an upper estimate of Rmax in the model, with a parameter range of 1.0125 and 1.0825 (i.e., 

maximum R0 = 1.28 – 6.85). Generation length was set to 25 years based on Wittemyer, 

Daballen and Douglas-Hamilton (69). The decision to set 1.0825 as the upper estimate was based 

on a comparison of observed and model simulated variation in population abundance, where 

variation in population abundance for the generational estimate was larger than expected based 

on annual estimates. 

We used time series data (1972 – 2000) for a population of L. africana at or near carrying 

capacity to calculate the standard deviation (SD) in population growth rate (70) = 0.44. This was 

used to model population fluctuations driven by environmental stochasticity (71). We calculated 

SD in population growth at a generational time step by repeatedly running an annual model for 

500 years and then calculating the standard deviation of population growth at a generational level 

once the population had reached carrying capacity. Doing this resulted in an estimate of SDR0 of 

0.175, which we treated as an upper estimate based on model simulations. The upper and lower 

bounds for SDR0 were set at 0 to 0.175.  

Density dependence was modelled using a Beverton-Holt type density dependent 

response (72), under which most compensation in vital rates occurs at population sizes close to 

carrying capacity; we chose this representation because model-simulation tests using this 

functional form showed ecologically realistic fluctuations in abundance when carrying capacity 

was exceeded. This was not true for the Ricker model. 

Dispersal 

We assume that M. primigenius would have been highly mobile (32) based on home 

range and seasonal migration rates of elephants, which can exceed 150 km in a matter of days 
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(73, 74). Furthermore, based on allometry a 10-year old male mammoth weighing 1500 kg 

(based on growth curves) would have a mean dispersal rate of ~ 75km and a maximum dispersal 

rate of ~ 394km, with upper limits of 187 km and 750 km, respectively (75). 

We modelled a mean dispersal rate of 15% of the population moving per generation at an 

average maximum distance of 300 km. We set upper and lower bounds on these estimates of 5 – 

25% and 100 – 500 km, respectively. Dispersal was modelled using the following equation: 

𝑚𝑖𝑗 = {𝑎
(

−𝐷𝑖𝑗

𝑏
)
,    𝐷 < 𝐷𝑚𝑎𝑥

0,          𝐷 ≥  𝐷𝑚𝑎𝑥

(2) 

 

Where movement (m) between cell i and j is a function of the parameters a, b, and Dmax; and 

Dij is the distance between the two populations. The parameter a is 0.5 × the total proportion of 

dispersers that leave a cell at each time step and b and Dmax are modelled as one of 9 

combinations depending on the estimate of D (1). This approach prevents large dispersal rates to 

closely neighbouring cells (i.e., the drainage effect) by pre-calculating a fixed proportion of 

individuals that should move to a given cell based on a, Dmax and Dij. 

Allee effect 

Genetic evidence suggests that M. primigenius experienced a negative Allee effect prior 

to extinction due to inbreeding (76). To capture this without the need of a detailed genetic sub-

model, we set a local quasi-extinction threshold (64) which made cell abundance zero if 

abundance fell below the Allee threshold. The range of values for the Allee effect were 0 (i.e., no 

Allee effect) to 500 mammoths per grid cell. The upper estimate is equivalent to 5% of max 

population abundance in highly suitable cell. 
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Environmental correlation 

This was a fixed parameter in our models that was set to b = 850 km (77), where b is the 

decay constant of an exponential decline model. This parameter accounts for similarity in 

environmental fluctuations for populations located close together versus further apart. 

Human hunting 

We modelled human hunting of M. primigenius as a function of the timing of the arrival 

and abundance of anatomically modern humans in a given grid cell (see Human density above), 

with maximum offtake rates varying from zero to 35% of mammoth population abundance and 

the type varying in form, from a Type II to a Type III functional response.  

We varied exploitation of M. primigenius by humans between zero and 35 % at 

equilibrium abundance (i.e., maximum abundance in a grid cell with HS = 1). Harvesting was 

modelled using the following functional response: 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =
(𝐹 × 𝑃𝑧)

(𝐺 + 𝑃𝑧)
(3) 

Where P is the density of prey population (current population size, divided by maximum 

population size), F is the maximal predation rate, G is a constant equal to the prey density at 

which predation is half-maximal, and z is a measure of the departure from maximal predation. 

Functional response gives the number of prey killed per predator per year.  

The harvest rate (H, proportion of the prey population killed) was calculated by dividing 

eq. 3 by the current prey density.  

𝐻 =
(

𝐹 × 𝑃𝑧

𝐺 +  𝑃𝑧)

𝑃
(4)
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The parameterization (above) is based on considering all of the human population in a particular 

grid cell at maximal density as 1 predator. Thus, to get harvest rate at a particular time and grid 

cell, eq. 4 was multiplied by the human population density (i.e., current human population, 

divided by maximum human population [500 per 100km2; see above]) at that time and grid cell: 

𝐻` =
(

𝑁 × 𝐹 × 𝑃𝑧

𝐺 +  𝑃𝑧 )

𝑃
(5)

 

Where N is the human population density. G was set to 0.4 (52, 55), and F varied from 0 to 0.35.  

Previously Alroy (78) modelled hunting success of megafauna by setting z = 1 in the 

above equation. This resulted in a type II functional response. We modelled z as a variable 

parameter ranging from 1 to 2 (following (78)). At z = 1 the function is monotonic, under which 

predation is modulated only by prey density and predator satiation, implying complete naivety of 

prey. At z >1.5 hunting success takes on an increasingly sigmoidal Type III functional response, 

under which prey become harder to hunt at low densities. This might result from prey adaptation 

(evolved or learned behaviour), prey switching by hunters or prey being located in refugia (79, 

80). We chose not to model a numerical response because the human population in Eurasia were 

not obligate hunters of mammoths. This is evident by an approximately exponential long-term 

growth trend in Eurasia during the early-to-mid Holocene (81, 82). Fluctuations in human 

population during this time have been linked to climate and associated societal responses, 

including altered food-procurement strategies involving a wide variety of sources (83).  

Latin hypercube sampling 

Models built using ‘best estimates’ for demographic parameters and environmental 

attributes were varied across wide but plausible ranges using a Latin hypercube sampling to 

provide a robust coverage of multi-dimensional parameter space (60). This procedure produced 
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90,000 conceivable models with different combinations of rates of population growth, dispersal, 

climate suitability, exploitation by humans and so on, each of which we ran for a single replicate 

(84).  

Latin hypercube sampling generates a stratified random subset of parameter input values 

for simulation, by assigning a plausible range for each parameter and sampling all subsets of its 

distribution once, based on subdivisions of equal probability density (85). With the exception of 

human abundance there were no best estimates, so we used uniform sampling distributions 

(triangular for human abundance). Appendix 3 in Fordham and Brown (1) shows the plausible 

range for each parameter used in the hypercube.  

Pattern Oriented Modelling 

We used pattern-orientated modelling (POM) to evaluate whether a model is adequate in 

its structure and parameterization to simulate mechanistic responses to climate change and 

exploitation in a way that realistically matches the observed outcomes (41, 86). Model 

simulations of changes in range area, extirpation patterns, total population size, and location of 

the last remaining population/populations (or extant populations for models where extinction did 

not occur prior to 3,000 BP) were assessed using a multivariate target based on inferences from 

the fossil record and ancient DNA.  

Observed and modelled summary statistics 

Changes in population size and location 

We used trend in effective population size (Ne) (1) as a proxy for change in total 

population size for mammoths (11) using Bayesian skyline plots (87). This method 

simultaneously estimates genealogy, demographic history, and substitution-model parameters in 
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a single analysis, directly accounting for phylogenetic uncertainty of the inferred genealogy. 

Bayesian Skyline Plot permits instantaneous changes in population size to be estimated which is 

needed to detect rapid changes in population dynamics (87). Effective population size was 

calculated using a previously compiled dataset containing 445 radiocarbon-dated fossils (88). 

From these, 74 fossil records have associated aDNA sequences (88), which are available in 

GenBank (89). These were aligned using Geneious v1.9.8 (90) and the MUSCLE algorithm (91), 

using default settings. Radiocarbon dates were calibrated using OxCal and the IntCal13 

calibration curve (92). We reconstructed the genealogy using BEAUti v.1.10.4 and BEAST 

v1.10.4 (93). We used the average calibrated date of each fossil record as prior information for 

the tip-dates, and the standard deviation to derive uncertainty in the tip-dates.  

We selected a GTR + Gamma + Invariant Sites substitution model, based on Akaike’s 

Information Criterion (AIC), done in jModelTest v2.1.10 (94). We used a strict molecular clock, 

a Coalescent Bayesian Skyline Tree Prior, a constant Skyline Model and the UPGMA starting 

tree. The Markov Chain Monte Carlo run was set with a chain length of 108 and to log 

parameters every 104 simulations to avoid possible autocorrelation during the MCMC analysis. 

We then analysed the output using Tracer v1.7.1 (95). Our approach is similar to the approach 

used by Foote, Kaschner, Schultze, Garilao, Ho, Post, Higham, Stokowska, van der Es, Embling, 

Gregersen, Johansson, Willerslev and Gilbert (96) to investigate changes in mammal Ne based on 

aDNA and contemporary sequences. The resulting estimate of Ne for woolly mammoth (1) 

mirrors estimates elsewhere (97). 

We used piecewise regression to determine the inflection points for the line segments for 

the mean and upper and lower confidence intervals and then calculated the coefficients using the 

Program R package ‘segmented’ (98). Using this approach, we identified the steepest decline in 
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the median estimate of Ne during the period 12,613 to 18,619 BP. We calculated the slope of Ne 

using a Theil–Sen estimator with the R package ‘trend’ (99) for this time interval. We also 

calculated the Thiel-Sen slope in simulated total population size for the period 12,613 to 18,619 

BP (i.e., the period for which the slope of median Ne was calculated) and used this as input in our 

Approximate Bayesian Computation (see next section). 

As a spatio-temporal target we calculated the number of sites where mammoth 

populations were simulated to coincide with sites from the fossil record.  

Timing and location of extinction:  

We estimated time and location of range-wide extinction and the extirpation pattern using 

a maximum-likelihood method first developed by Solow, Roberts and Robbirt (100) to correct 

for the Signor-Lipps effect. Using an adapted approach (101) we estimated the median time of 

range wide extinction to be 3798 BP (95% Confidence Levels = 4089 BP to 3450 BP) and for 

this to have occurred on Wrangel Island, located off the coast of Beringia. A lower estimate of ~ 

3.4 k BP for the timing and location of the final extinction event corresponds with other studies 

(102). We calculated the time of extirpation (in years BP) for each of the simulations and then 

calculated the difference between the model- and fossil-based estimates. If the model-based 

estimate fell within the 95% Confidence Levels the difference was zero years.  

We calculated the distance from the last remaining simulated population of mammoths to 

the site of the youngest fossil by calculating the shortest distance between two points on an 

ellipsoid (i.e., allowing for the non-spherical shape of the earth) using the R package ‘geosphere’ 

(103). Where the final extinction event was caused by the extirpation of more than one 

population, we calculated a weighted centroid using the simulated abundances of these locations 
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and then calculated the distance (in km) to the ‘real’ location of the final extinction event (i.e. 

Wrangel Island).  

Approximate Bayesian Analysis  

We used Approximate Bayesian Computation (ABC) analysis (57) to determine models 

that did well at replicating the range dynamics of woolly mammoth during the late Pleistocene 

and Holocene. The ABC approach to pattern-oriented modelling provides a systematic way of 

assessing support for different model versions and parameterisations based on available 

validation data, given some prior beliefs about how likely they are (104). The use of ABC 

approaches for calibrating and evaluating complex demographic-based models can embed the 

often-complex process of optimising model structure and parameters within an established 

statistical framework, thereby making the process transparent and objective (104, 105). 

Specifically, we used ABC to fit the simulation models to data and estimate (and narrow 

down) the posterior distribution of model parameters. We did this using the R package ‘abc’ 

(106). Parameter values in the ABC analysis were the 12 demographic and niche parameters (see 

Appendix 4 in Fordham and Brown (1) for details). The summary and target statistics were 

treated collectively in the ABC modelling (i.e., using a multi-variate target), meaning that 

models were assessed on the capability to simultaneously replicate a suite of key aspects of the 

extinction dynamics of mammoths. 

We used a neural-network-regression algorithm to construct the posterior distributions of 

parameters because of the high dimensionality and potential non-linearity associations between 

the target statistics (106). Targets used in the model (described above) were: (i) Thiel-Sen trend 

of the median Ne estimates, (ii) time of extinction, (iii) distance to last fossil record, and (iv) the 

number of simulated fossil sites. The number of hidden layers (n = 3) was chosen based on 
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assessment of the model fit to the residuals using QQ plots, whilst the accuracy of parameter 

estimates and sensitivity to the tolerance rate threshold (0.01 or 0.005) was assessed using the 

rejection method and the ‘cv4abc’ function (106) with 2,000 leave-one-out samples. Based on 

cross validation, we selected a tolerance rate of 0.01 to generate and compare density plots of the 

prior and posterior distributions and calculate credible intervals as the prediction error between 

the tolerances was negligible (difference in mean prediction error = 0.009).  

Identifying drivers of extinction and range collapse 

Models retained from the prior distribution (n = 900 models) using ABC analysis (i.e., 

those making up the posterior distribution of the top 1% of feasible parameterisations, as 

assessed by the multi-variate target from the pattern-oriented modelling) were used to generate 

an ensemble average (weighted by the Euclidean distance of the model from the idealised 

targets) of timing of extirpation (extinction at the grid cell) and total population abundance. 

These were verified using expert knowledge and published studies. 

Statistical analysis 

We assessed the role of human harvesting and climate change on the extinction of 

mammoths during the most recent deglaciation period using random forest classification trees, 

implemented with the ‘ranger’ package for R (107). Random forests have been used previously 

to identify the most important drivers of extinction times from multi-predictor correlative models 

(77). To do this we first discretized the period between 21 and 5 kya BP into three climatically 

distinct periods of time (21-15 kya BP [P1], 15-11 kya BP [P2], 11-5 kya BP [P3]) (108), and for 

each of the periods calculated a suite of metrics related to the magnitude and pace of climatic 
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change and human expansion. These metrics are detailed in Appendix 2 of Fordham and Brown 

(1).  

For each period of time (P1-P3), we built and cross validated (10 repeats of 10-fold CV) 

a random forest model that linked climate and human variables (each modelled separately and 

together) to extinction risk. We modelled extinction risk as Expected Minimum Abundance 

(EMA) over the time period (109), divided by population abundance at the start of the period. All 

models included range area (km2) at the beginning of the focal period to account for the strong 

relationship between range area and EMA (77), and the fact that range area and population size 

are not necessarily linearly correlated (110). Candidate model sets were constructed and tested 

for each period of time (P1-P3), at four spatial scales (entire study region [Eurasia], Europe-only, 

Asia-only, and Beringia-only).  

The random forest regression models were constructed with 2,000 trees, whilst the 

number of variables tried at each split and the minimum node size of the trees was tuned via 

cross validation to maximize model accuracy. Subsampling for the trees was done without 

replacement using 66% of the samples, whilst variable importance was calculated using unscaled 

permutation importance (111). Raw variable importance scores from the permutation approach 

were converted to % contribution to explained variance. This was done to allow comparisons 

across time and space of the importance of the variables (112). Interactions between the variables 

and EMA were assessed using Accumulated Local Effects plots, which are preferable to 

traditional partial dependency plots when variables are potentially correlated (113). Inspection of 

accumulative Local Effects plots showed that climate and human drivers in the model affected 

EMA in a logical way (1) (as expected a priori from theory), where increases in the strength of 

warming and human drivers resulted, in most instances, in a negative impact on EMA. The 
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positive relationship between EMA and some human impact parameters in P1 (21,000 BP to 

15,000 BP) is likely to reflect a positive relationship between mammoth carrying capacity, and 

independently, human abundance, with a common set of climate attributes during the early stage 

of this period (see Main Text Fig. 2). 

To assess the level of spatiotemporal autocorrelation between climatic and human drivers 

of extinction we calculated Lee’s L Statistic (114) for each time step for the 900 selected models. 

Lee’s L statistic was calculated using the R package ‘spdep’ (115). Lee’s L statistic estimates the 

amount of spatial clustering present in a bivariate relationship with positive values indicating 

positive spatial autocorrelation, negative values indicating negative spatial autocorrelation (0 

implies no relationship). Standardised spatial weights for the relationship were defined by 

calculating the number of nearest neighbours to each cell with a minimum and maximum 

distance of 100 and 500 km, respectively. The model weights from the ABC analysis were then 

used to calculate the weighted ensemble mean L statistic. 

Timing of extirpation and probability of occurrence 

To estimate and map time of extirpation we determined the final time step that each of 

the 1° × 1° grid cells was occupied for each of the 900 ABC selected simulations. To generate 

spatiotemporal estimates of probability of occurrence, we produced binary presence/absence 

maps for each time step for each of the 900 ABC selected simulations. These extirpation and 

binary presence absence maps were then used to generate ensemble weighted average extirpation 

and probability of occurrence maps using the weights from the ABC analysis.  

To calculate a minimum threshold for occurrence we calculated the probability of 

occurrence that maximized the area under the receiver operating curve for the fossil record based 

on predictions from a binomial GLM. To do this, we extracted the mean probability of 
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occurrence for each fossil across time (Fossil age ± 1 S.D), and for 10 randomly sampled 

background points (48) covering the same time interval. Using 10 repeats of 10-fold cross 

validation, we built 100 binomial GLMs using different thresholds between 0 and 1 at 0.01 

intervals. AUC was calculated for each of the models, with the smallest threshold (0.34) being 

chosen that maximised AUC (AUC = 0.917).  

Scenario testing 

A counterfactual scenario was run on the 900 selected (by ABC) simulations to confirm 

the impacts of human harvesting on mammoth populations. The scenario altered the harvesting 

rates of humans on the landscape, by prohibiting harvesting during the simulation, including the 

burn-in period. The effects of humans were quantified by: (i) analysing differences in scaled 

expected minimum abundance between the baseline and no-humans scenario; (ii) calculating the 

difference in grid-cell mean weighted extirpation dates between the baseline and no-humans 

scenario; (iii) calculating differences in regional and range-wide estimates of EMA between the 

baseline and no-humans scenario; and (iv) quantifying synchrony in the time series of 

abundances for the baseline and no-humans scenario (116, 117). Differences in EMA within 

each region were compared with a weighted t test in the ‘weights’ package for R (118). Weights 

were specified using the ABC weights (see above). Percent increase in survival under the no-

humans scenario was calculated by comparing the number of simulations that went extinct 

between the baseline and no-human scenarios. Synchrony was measured as the average phase 

synchrony of the time series of abundances for each of the 900 models, and by finding the 

proportion of local minima and maxima (i.e. the peaks and troughs of abundances; peak 

coincidence) that were congruent in the simulations of abundance. Phase synchrony and peak 

coincidence was calculated using the synchrony package for R (119).  



 

 

24 

 

References 

1. D. Fordham, S. C. Brown. Appendix 1 - 4 for Humans hastened the range collapse and 

extinction of woolly mammoth. doi:10.25909/5f22592242ca2 (2020) Figshare. 

2. M. Rodríguez-Rey et al., Criteria for assessing the quality of Middle Pleistocene to 

Holocene vertebrate fossil ages. Quaternary Geochronology 30, Part A, 69-79 (2015). 

3. A. D. Barnosky, E. L. Lindsey, Timing of Quaternary megafaunal extinction in South 

America in relation to human arrival and climate change. Quaternary International 217, 

10-29 (2010). 

4. C. Bronk Ramsey, Bayesian Analysis of Radiocarbon Dates. Radiocarbon 51, 337-360 

(2009). 

5. P. J. Reimer et al., IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–

50,000 Years cal BP. Radiocarbon 55, 1869-1887 (2013). 

6. F. d'Errico, W. E. Banks, M. Vanhaeren, V. Laroulandie, L. M, PACEA Geo-Referenced 

Radiocarbon Database. PaleoAnthropology 1, 1-12 (2001). 

7. K. Manning, S. Colledge, E. Crema, S. Shennan, A. Timpson, The Cultural Evolution of 

Neolithic Europe. EUROEVOL Dataset 1: Sites, Phases and Radiocarbon Data. Journal 

of Open Archaeology Data 5,  (2016). 

8. A. Martindale et al. (2016). 

9. T. H. van Andel, The Climate and Landscape of the Middle Part of the Weichselian 

Glaciation in Europe: The Stage 3 Project. Quaternary Research 57, 2-8 (2002). 

10. P. M. Vermeersch. (2020). 

11. E. D. Lorenzen et al., Species-specific responses of Late Quaternary megafauna to 

climate and humans. Nature 479, 359-364 (2011). 

12. G. G. Boeskorov, Survival of indicator species of the mammoth fauna large mammals in 

the Holocene of Yakutia (East Siberia, Russia). IOP Conference Series: Earth and 

Environmental Science 438, 012004 (2020). 

13. D. A. Fordham et al., PaleoView: a tool for generating continuous climate projections 

spanning the last 21 000 years at regional and global scales. Ecography 40, 1348-1358 

(2017). 

14. W. D. Collins et al., The Community Climate System Model Version 3 (CCSM3). 

Journal of Climate 19, 2122-2143 (2006). 

15. B. L. Otto-Bliesner et al., Climate Sensitivity of Moderate- and Low-Resolution Versions 

of CCSM3 to Preindustrial Forcings. Journal of Climate 19, 2567-2583 (2006). 

16. S. G. Yeager, C. A. Shields, W. G. Large, J. J. Hack, The Low-Resolution CCSM3. 

Journal of Climate 19, 2545-2566 (2006). 

17. C. F. Dormann, B. Gruber, M. Winter, D. Herrmann, Evolution of climate niches in 

European mammals? Biology Letters 6, 229-232 (2010). 

18. B.-E. Sæther, Environmental stochasticity and population dynamics of large herbivores: a 

search for mechanisms. Trends Ecol Evol 12, 143-149 (1997). 

19. J.-P. Desforges et al., Quantification of the full lifecycle bioenergetics of a large mammal 

in the high Arctic. Ecol. Model. 401, 27-39 (2019). 

20. S. C. Elmendorf et al., Plot-scale evidence of tundra vegetation change and links to recent 

summer warming. Nat Clim Change 2, 453-457 (2012). 

21. E. J. Solberg et al., Effects of density-dependence and climate on the dynamics of a 

Svalbard reindeer population. Ecography 24, 441-451 (2001). 



 

 

25 

 

22. N. M. Schmidt, S. H. Pedersen, J. B. Mosbacher, L. H. Hansen, Long-term patterns of 

muskox (Ovibos moschatus) demographics in high arctic Greenland. Polar Biology 38, 

1667-1675 (2015). 

23. K. Giampoudakis et al., Niche dynamics of Palaeolithic modern humans during the 

settlement of the Palaearctic. Glob. Ecol. Biogeogr. 26, 359-370 (2017). 

24. D. A. Fordham, F. Saltré, S. C. Brown, C. Mellin, T. M. L. Wigley, Why decadal to 

century timescale palaeoclimate data are needed to explain present‐day patterns of 

biological diversity and change. Glob. Change Biol. 24, 1371-1381 (2018). 

25. J. S. Singarayer, P. J. Valdes, High-latitude climate sensitivity to ice-sheet forcing over 

the last 120 kyr. Quaternary Science Reviews 29, 43-55 (2010). 

26. D. A. Fordham, T. M. L. Wigley, B. W. Brook, Multi-model climate projections for 

biodiversity risk assessments. Ecological Applications 21, 3317-3331 (2011). 

27. S. Faurby, M. B. Araújo, Anthropogenic range contractions bias species climate change 

forecasts. Nat Clim Change 8, 252-256 (2018). 

28. S. Dolédec, D. Chessel, C. Gimaret-Carpentier, Niche separation in community analysis: 

A new method. Ecology 81, 2914-2927 (2000). 

29. F. Saltré et al., Climate or migration: what limited European beech post-glacial 

colonization? Glob. Ecol. Biogeogr. 22, 1217-1227 (2013). 

30. P. Braconnot, Y. Luan, S. Brewer, W. Zheng, Impact of Earth's orbit and freshwater 

fluxes on Holocene climate mean seasonal cycle and ENSO characteristics. Climate 

Dynamics 38, 1081-1092 (2012). 

31. G. E. Hutchinson, Population studies: Animal ecology and demography - concluding 

remarks. Cold Spring Harb Symp Quant Biol 22, 415-427 (1957). 

32. D. Nogués-Bravo, Predicting the past distribution of species climatic niches. Glob. Ecol. 

Biogeogr. 18, 521-531 (2009). 

33. D. A. Fordham, B. W. Brook, C. Moritz, D. Nogues-Bravo, Better forecasts of range 

dynamics using genetic data. Trends Ecol Evol 29, 436-443 (2014). 

34. C. F. Dormann et al., Collinearity: a review of methods to deal with it and a simulation 

study evaluating their performance. Ecography 36, 27-46 (2013). 

35. B. Blonder, D. J. Harris, hypervolume: High Dimensional Geometry and Set Operations 

Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls (2.0.12, 

2019 https://CRAN.R-project.org/package=hypervolume). 

36. B. Blonder, C. Lamanna, C. Violle, B. J. Enquist, The n-dimensional hypervolume. Glob. 

Ecol. Biogeogr. 23, 595-609 (2014). 

37. B. Blonder, Do Hypervolumes Have Holes? Am Nat 187, E93-105 (2016). 

38. S. Dray, A.-B. Dufour, The ade4 Package: Implementing the Duality Diagram for 

Ecologists. Journal of Statistical Software; Vol 1, Issue 4 (2007),  (2007). 

39. W. Thuiller, S. Lavorel, G. Midgley, S. Lavergne, T. Rebelo, Relating plant traits and 

species distributions along bioclimatic gradients for 88 leucadendron taxa. Ecology 85, 

1688-1699 (2004). 

40. C. Hof, C. Rahbek, M. B. Araújo, Phylogenetic signals in the climatic niches of the 

world's amphibians. Ecography 33, 242-250 (2010). 

41. V. Grimm et al., Pattern-Oriented Modeling of Agent-Based Complex Systems: Lessons 

from Ecology. Science 310, 987 (2005). 

42. S. J. Phillips, R. P. Anderson, R. E. Schapire, Maximum entropy modeling of species 

geographic distributions. Ecol. Model. 190, 231-259 (2006). 

https://cran.r-project.org/package=hypervolume


 

 

26 

 

43. J. Elith, J. R. Leathwick, Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. 40, 677-697 (2009). 

44. B. Blonder et al., New approaches for delineating n-dimensional hypervolumes. Methods 

Ecol Evol 9, 305-319 (2018). 

45. J. Elith et al., Novel methods improve prediction of species’ distributions from 

occurrence data. Ecography 29, 129-151 (2006). 

46. C. E. Myers, A. L. Stigall, B. S. Lieberman, PaleoENM: applying ecological niche 

modeling to the fossil record. Paleobiology 41, 226-244 (2015). 

47. D. B. Harris et al., The influence of non-climate predictors at local and landscape 

resolutions depends on the autecology of the species. Austral Ecology 39, 710-721 

(2014). 

48. C. Merow, M. J. Smith, J. A. Silander Jr, A practical guide to MaxEnt for modeling 

species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 

1058-1069 (2013). 

49. C. Liu, P. M. Berry, T. P. Dawson, R. G. Pearson, Selecting thresholds of occurrence in 

the prediction of species distributions. Ecography 28, 385-393 (2005). 

50. O. Allouche, A. Tsoar, R. Kadmon, Assessing the accuracy of species distribution 

models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 

43, 1223-1232 (2006). 

51. R. G. Pearson, C. J. Raxworthy, M. Nakamura, A. Townsend Peterson, Predicting species 

distributions from small numbers of occurrence records: a test case using cryptic geckos 

in Madagascar. J. Biogeogr. 34, 102-117 (2007). 

52. A. Eriksson et al., Late Pleistocene climate change and the global expansion of 

anatomically modern humans. Proc Natl Acad Sci U S A 109, 16089-16094 (2012). 

53. M. Tallavaara, J. T. Eronen, M. Luoto, Productivity, biodiversity, and pathogens 

influence the global hunter-gatherer population density. Proc Natl Acad Sci U S A 115, 

1232 (2018). 

54. M. Raghavan et al., Genomic evidence for the Pleistocene and recent population history 

of Native Americans. Science 349, aab3884 (2015). 

55. A. Timmermann, T. Friedrich, Late Pleistocene climate drivers of early human migration. 

Nature 538, 92-95 (2016). 

56. H. Lieth, in Primary productivity of the biosphere, H. Lieth, R. J. Whittaker, Eds. 

(Springer-Verlag, New York, USA, 1975). 

57. K. Csilléry, M. G. B. Blum, O. E. Gaggiotti, O. François, Approximate Bayesian 

Computation (ABC) in practice. Trends Ecol Evol 25, 410-418 (2010). 

58. M. D. McKay, R. J. Beckman, W. J. Conover, A Comparison of Three Methods for 

Selecting Values of Input Variables in the Analysis of Output from a Computer Code. 

Technometrics 21, 239-245 (1979). 

59. L. R. Binford, Constructing frames of reference: an analytical method for archaeological 

theory building using ethnographic and environmental data sets.  (Univ of California 

Press, 2001). 

60. D. A. Fordham, S. Haythorne, B. W. Brook, Sensitivity Analysis of Range Dynamics 

Models (SARDM): Quantifying the influence of parameter uncertainty on forecasts of 

extinction risk from global change. Environmental Modelling & Software 83, 193-197 

(2016). 



 

 

27 

 

61. A. E. Dunham, H. R. AkÇAkaya, T. S. Bridges, Using Scalar Models for Precautionary 

Assessments of Threatened Species. Conserv. Biol. 20, 1499-1506 (2006). 

62. D. A. Fordham et al., How complex should models be? Comparing correlative and 

mechanistic range dynamics models. Glob. Change Biol. 24, 1357-1370 (2018). 

63. J. VanDerWal, Luke P. Shoo, Christopher N. Johnson, Stephen E. Williams, Abundance 

and the Environmental Niche: Environmental Suitability Estimated from Niche Models 

Predicts the Upper Limit of Local Abundance. The American Naturalist 174, 282-291 

(2009). 

64. D. A. Fordham et al., Adapted conservation measures are required to save the Iberian 

lynx in a changing climate. Nat Clim Change 3, 899-903 (2013). 

65. R. M. Nowak, E. P. Walker, Walker's Mammals of the World.  (The Johns Hopkins 

University Press, Baltimore and London, 1999), vol. 1. 

66. D. Nogués-Bravo, J. Rodríguez, J. Hortal, P. Batra, M. B. Araújo, Climate Change, 

Humans, and the Extinction of the Woolly Mammoth. PLoS Biol 6, e79 (2008). 

67. B. W. Brook, C. J. A. Bradshaw, Strength of evidence for density dependence in 

abundance time series of 1198 species. Ecology 87, 1445-1451 (2006). 

68. C. A. H. Foley, L. J. Faust, Rapid population growth in an elephant Loxodonta africana 

population recovering from poaching in Tarangire National Park, Tanzania. Oryx 44, 

205-212 (2010). 

69. G. Wittemyer, D. Daballen, I. Douglas-Hamilton, Comparative Demography of an At-

Risk African Elephant Population. PLoS ONE 8, e53726 (2013). 

70. C. J. Moss, The demography of an African elephant (Loxodonta africana) population in 

Amboseli, Kenya. J. Zool. 255, 145-156 (2001). 

71. H. Ullah, I. Nagelkerken, S. U. Goldenberg, D. A. Fordham, Climate change could drive 

marine food web collapse through altered trophic flows and cyanobacterial proliferation. 

PLoS Biol 16, e2003446 (2018). 

72. R. J. Beverton, S. J. Holt, On the dynamics of exploited fish populations. Fishery 

Investigations (Great Britain, Ministry of Agriculture, Fisheries, and Food, London, 

1957). 

73. A. Verlinden, I. K. N. Gavorv, Satellite tracking of elephants in northern Botswana. 

African Journal of Ecology 36, 105-116 (1998). 

74. P. A. De Villiers, O. B. Kok, Home range, association and related aspects of elephants in 

the eastern Transvaal Lowveld. African Journal of Ecology 35, 224-236 (1997). 

75. G. D. Sutherland, A. S. Harestad, K. Price, K. P. Lertzman, Scaling of natal dispersal 

distances in terrestrial birds and mammals. Conservation Ecology 4,  (2000). 

76. E. Palkopoulou et al., Complete genomes reveal signatures of demographic and genetic 

declines in the woolly mammoth. Curr Biol 25, 1395-1400 (2015). 

77. R. G. Pearson et al., Life history and spatial traits predict extinction risk due to climate 

change. Nat Clim Change 4, 217-221 (2014). 

78. J. Alroy, A Multispecies Overkill Simulation of the End-Pleistocene Megafaunal Mass 

Extinction. Science 292, 1893 (2001). 

79. B. W. Brook, D. M. J. S. Bowman, The uncertain blitzkrieg of Pleistocene megafauna. J. 

Biogeogr. 31, 517-523 (2004). 

80. B. W. Brook, C. N. Johnson, Selective hunting of juveniles as a cause of the 

imperceptible overkill of the Australian Pleistocene megafauna. Alcheringa: An 

Australasian Journal of Palaeontology 30, 39-48 (2006). 



 

 

28 

 

81. G. M. Kılınç et al., Investigating Holocene human population history in North Asia using 

ancient mitogenomes. Scientific Reports 8, 8969 (2018). 

82. S. Shennan et al., Regional population collapse followed initial agriculture booms in mid-

Holocene Europe. Nat Comm 4, 2486 (2013). 

83. A. Bevan et al., Holocene fluctuations in human population demonstrate repeated links to 

food production and climate. Proc Natl Acad Sci U S A 114, E10524 (2017). 

84. T. A. A. Prowse et al., An efficient protocol for the global sensitivity analysis of 

stochastic ecological models. Ecosphere 7, e01238 (2016). 

85. J. Norton, An introduction to sensitivity assessment of simulation models. Environmental 

Modelling & Software 69, 166-174 (2015). 

86. V. Grimm, S. F. Railsback, Pattern-oriented modelling: a ‘multi-scope’ for predictive 

systems ecology. Phil Trans R Soc B 367, 298-310 (2012). 

87. S. Y. W. Ho, B. Shapiro, Skyline-plot methods for estimating demographic history from 

nucleotide sequences. Molecular Ecology Resources 11, 423-434 (2011). 

88. A. Flórez-Rodríguez, University of Copenhagen,  (2016). 

89. D. A. Benson et al., GenBank. Nucleic Acids Research 41, D36-D42 (2013). 

90. M. Kearse et al., Geneious Basic: An integrated and extendable desktop software 

platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-

1649 (2012). 

91. R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high 

throughput. Nucleic Acids Research 32, 1792-1797 (2004). 

92. C. Bronk Ramsey et al., A Complete Terrestrial Radiocarbon Record for 11.2 to 52.8 kyr 

B.P. Science 338, 370 (2012). 

93. M. A. Suchard et al., Bayesian phylogenetic and phylodynamic data integration using 

BEAST 1.10. Virus Evolution 4,  (2018). 

94. D. Darriba, G. L. Taboada, R. Doallo, D. Posada, jModelTest 2: more models, new 

heuristics and parallel computing. Nature Methods 9, 772-772 (2012). 

95. A. Rambaut, A. J. Drummond, D. Xie, G. Baele, M. A. Suchard, Posterior 

Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic biology 67, 901-

904 (2018). 

96. A. D. Foote et al., Ancient DNA reveals that bowhead whale lineages survived Late 

Pleistocene climate change and habitat shifts. Nat Comm 4, 1677 (2013). 

97. E. Palkopoulou et al., Holarctic genetic structure and range dynamics in the woolly 

mammoth. Proc. R. Soc. B-Biol. Sci. 280, 20131910 (2013). 

98. V. M. R. Muggeo, segmented: an R Package to Fit Regression Models with Broken-Line 

Relationships. R News 8, 20-25 (2008). 

99. T. Pohlert, trend: Non-Parametric Trend Tests and Change-Point Detection (1.1.2, 2020 

https://CRAN.R-project.org/package=trend). 

100. A. R. Solow, D. L. Roberts, K. M. Robbirt, On the Pleistocene extinctions of Alaskan 

mammoths and horses. Proc Natl Acad Sci U S A 103, 7351 (2006). 

101. F. Saltré et al., Uncertainties in dating constrain model choice for inferring extinction 

time from fossil records. Quaternary Science Reviews 112, 128-137 (2015). 

102. S. L. Vartanyan, K. A. Arslanov, J. A. Karhu, G. Possnert, L. D. Sulerzhitsky, Collection 

of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of 

Wrangel Island, northeast Siberia, Russia. Quaternary Research 70, 51-59 (2008). 

https://cran.r-project.org/package=trend


 

 

29 

 

103. R. J. Hijmans, geosphere: Spherical Trigonometry (1.5-10, 2019 https://CRAN.R-

project.org/package=geosphere). 

104. E. van der Vaart, M. A. Beaumont, A. S. A. Johnston, R. M. Sibly, Calibration and 

evaluation of individual-based models using Approximate Bayesian Computation. Ecol. 

Model. 312, 182-190 (2015). 

105. K. Wells et al., Timing and severity of immunizing diseases in rabbits is controlled by 

seasonal matching of host and pathogen dynamics. Journal of The Royal Society 

Interface 12, 20141184 (2015). 

106. K. Csilléry, O. François, M. G. B. Blum, abc: an R package for approximate Bayesian 

computation (ABC). Methods Ecol Evol 3, 475-479 (2012). 

107. M. N. Wright, A. Ziegler, ranger: A Fast Implementation of Random Forests for High 

Dimensional Data in C++ and R. Journal of Statistical Software; Vol 1, Issue 1 (2017),  

(2017). 

108. P. U. Clark et al., Global climate evolution during the last deglaciation. Proc Natl Acad 

Sci U S A 109, E1134-1142 (2012). 

109. M. A. McCarthy, C. Thompson, Expected minimum population size as a measure of 

threat. Anim. Conserv. 4, 351-355 (2001). 

110. D. A. Fordham, H. R. Akçakaya, M. B. Araújo, D. A. Keith, B. W. Brook, Tools for 

integrating range change, extinction risk and climate change information into 

conservation management. Ecography 36, 956-964 (2013). 

111. C. Strobl, A.-L. Boulesteix, A. Zeileis, T. Hothorn, Bias in random forest variable 

importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25 

(2007). 

112. J. Elith, J. R. Leathwick, T. Hastie, A working guide to boosted regression trees. J Anim 

Ecol 77, 802-813 (2008). 

113. D. W. Apley, J. Zhu, Visualizing the effects of predictor variables in black box 

supervised learning models. arXiv preprint arXiv:1612.08468v2,  (2019). 

114. S.-I. Lee, Developing a bivariate spatial association measure: An integration of Pearson's 

r and Moran's I. Journal of Geographical Systems 3, 369-385 (2001). 

115. R. S. Bivand, E. J. Pebesma, V. Gómez-Rubio, E. J. Pebesma, Applied spatial data 

analysis with R, Second edition.  (Springer, New York, 2013). 

116. J. P. Buonaccorsi, J. S. Elkinton, S. R. Evans, A. M. Liebhold, Measuring and testing for 

spatial synchrony. Ecology 82, 1668-1679 (2001). 

117. B. Cazelles, L. Stone, Detection of Imperfect Population Synchrony in an Uncertain 

World. J Anim Ecol 72, 953-968 (2003). 

118. J. Pasek, T. A, weights: Weighting and Weighted Statistics (1.0.1, 2020 https://CRAN.R-

project.org/package=weights). 

119. T. C. Gouhier, F. Guichard, Synchrony: quantifying variability in space and time. 

Methods Ecol Evol 5, 524-533 (2014). 

 

https://cran.r-project.org/package=geosphere
https://cran.r-project.org/package=geosphere
https://cran.r-project.org/package=weights
https://cran.r-project.org/package=weights

	Supplementary Methods
	Contents
	Fossil data
	Climate data
	Dynamic spatial structure
	Multi-temporal niche hypervolume
	Niche marginality and tolerance
	Modelling the bioclimatic envelope

	Human density
	Process-explicit mammoth model
	Upper abundance
	Population growth
	Dispersal
	Allee effect
	Environmental correlation
	Human hunting

	Latin hypercube sampling
	Pattern Oriented Modelling
	Observed and modelled summary statistics
	Changes in population size and location
	Timing and location of extinction:

	Approximate Bayesian Analysis
	Identifying drivers of extinction and range collapse
	Statistical analysis

	Timing of extirpation and probability of occurrence
	Scenario testing
	References

