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Materials and Methods 

Thylacine occurrence records 

We collated occurrence records of Thylacinus cynocephalus from two sources:  

a) Bounty records for the period 1888-1912 archived by the Tasmanian Government 

(Lands Tasmania). We geolocated harvest records based on the place of harvest in the 

bounty record.  

b) Tasmanian Thylacine Sighting Records Database: which includes the location of 

verified kills or captures as well as expert sightings for the years (1913-1936) (Brook 

et al. 2021). 

To reduce spatial autocorrelation, we removed all duplicates and thinned the occurrence data, 

ensuring a minimum distance of 4 km between observations, while at the same time retaining 

adequate sample size. This was done using the R function spthin (Aiello-Lammens et al. 

2015), and resulted in total of 310 spatially independent records, which are available here: 

https://doi.org/10.25909/14751741.v1  

Climate and environmental data 

We accessed climatic data from the Biodiversity and Climate change Virtual Laboratory 

(BCCVL; bccvl.org.au) for Tasmania at a 30arcsec (~1 km) resolution. There are 19 possible 

climatic variables (30-year averages focused on 1990) available through BCCVL. We 

narrowed our selection of climate variables to six: mean diurnal range, isothermality, mean 

temperature in the wettest quarter, mean temperature in the driest quarter, seasonality in 

precipitation, and mean precipitation in the warmest quarter. This was done based on those 

variables that i) were identified as being potentially important correlates of Thylacine 



occurrence; and ii) had correlation coefficients that did not exceed 0.7, and, therefore,  were 

independent and not collinearly related  (Dormann et al. 2013).  We did not correct for 

climatic change during the 20th century prior to 1990, because it has been small in Tasmania, 

particularly during the first half of the 20th century (Scharples 2011). 

Candidate environmental variables deemed to be potentially important correlates of 

Thylacine occurrence were: pre-European vegetation, distance to water, elevation, 

topographic roughness, and land-use. Spatial data on pre-European vegetation came from the 

National Vegetation Information System (NVIS; 

https://www.environment.gov.au/land/native-vegetation/national-vegetation-information-

system), which we reclassified to four macro-vegetation groups: rainforest, tall eucalypt 

forest, woodland, and shrubland/grassland. We accessed surface water information from 

Geoscience Australia (https://www.ga.gov.au/scientific-topics/national-location-

information/national-surface-water-information) and calculated the distance of each cell to 

the nearest lake or river. Elevation at 30arcsec was collected from the Australian Bureau of 

Agricultural and Resource Economics and Sciences (ABARES, agriculture.gov.au). 

Topographic roughness was calculated from NASA Shuttle Radar Topography Mission 

(SRTM) global elevation data (https://www2.jpl.nasa.gov/srtm/) using a 250m analysis 

window. Land-use data for Tasmania came from the Australian Bureau of Agricultural and 

Resource Economics and Sciences (ABARES; agriculture.gov.au). Land-use in 1990 (the 

oldest data available) was grouped into four predominant types: conservation/nature reserves, 

modified native, plantation and farming/urban. All environmental data was resampled to a 

30arcsec resolution. Correlation coefficients between environmental variables was < 0.7. 

Pseudoabsences 

We generated pseudoabsences using a climatically- and geographically-stratified approach, 

also known as a ‘two-step-pseudoabsence selection’ (Senay, Worner & Ikeda 2013). To do this, 

a principal co-ordinate analysis (PCA) was used to differentiate between climatically suitable 

and unsuitable areas. Pseudoabsences were randomly sampled from climatically dissimilar 

areas at a ratio of 1:1 to the presence points  (Barbet-Massin et al. 2012). The minimum distance 

between pseudoabsence points, and pseudoabsence and presence points, was 8 km. 



Projecting habitat suitability 

To account for inter-model variability in projections of probability of Thylacine occurrence (a 

proxy of habitat suitability; Guisan & Zimmermann 2000) we fit an ensemble of species 

distribution models (SDM) (Araújo & New 2007), using the R package sdm (Naimi & Araujo 

2016). For the ensemble, we used five different model algorithms to represent the breadth of 

techniques available for modelling species distributions: generalised linear model (GLM), 

Multivariate Adaptive Regression Splines (MARS), Random Forest classification (RF), Radial 

Basis Function (RBF; artificial neural network) and Flexible Discriminant Analysis (FDA). 

We assessed the accuracy of each algorithm using the Receiver Operating Characteristic (ROC) 

curve (Allouche, Tsoar & Kadmon 2006). We used repeated k-fold cross validation (k = 10) to 

evaluate model performance and accuracy, and to tune model parameters (for each of the five 

algorithms) until they maximised the Area Under the Curve (AUC: Table 1). AUC values were 

also used for model refinement (variable selection/rejection), where only predictor values that 

provided the most accurate and parsimonious predictions were retained (Table 2). An ensemble 

projection of probability of occurrence for the Thylacine was derived by calculating a multi-

model (unweighted) average of all five model projections (Marmion et al. 2009). This spatial 

layer of habitat suitability is available within poems (poems::thylacine_hs_raster, 

Haythorne et al. (2021)).  

  



Table 1: Cross validation scores for Thylacine species distribution models. 

Model Predictor AUC 

GLM 6 0.78 

MARS 9 0.79 

RF 11 0.81 

RBF 11 0.78 

FDA 6 0.78 

Area Under the Curve (AUC) scores for five SDM algorithms based on 10-fold cross validation: 

generalised linear model (GLM), Multivariate Adaptive Regression Splines (MARS), Random 

Forest classification (RF), Radial Basis Function (RBF; artificial neural network) and Flexible 

Discriminant Analysis (FDA). Predictor shows the number of predictors needed to maximise 

AUC. 

  



Table 2: Climate and environmental predictors in different SDMs. 

Predictors GLM MARS RF RBF FDA 
meanDiurnal 

 
✓ ✓ ✓ 

 

isothermal ✓ ✓ ✓ ✓ 
 

meanTwetQ 
 

✓ ✓ ✓ 
 

meanTdryQ ✓ ✓ ✓ ✓ ✓ 
precipseas ✓ ✓ ✓ ✓ ✓ 

precipwarmQ ✓ ✓ ✓ ✓ ✓ 
elevation 

 
✓ ✓ ✓ ✓ 

distFW ✓ 
 

✓ ✓ ✓ 
roughness 

  
✓ ✓ 

 

vegetation 
 

✓ ✓ ✓ 
 

land-use  ✓ ✓ ✓ ✓ ✓ 

Predictor variables in different SDM algorithms used to estimate probability of occurrence 

for Thylacine: mean diurnal range (meanDiurnal), isothermality (isothermal), mean 

temperature in the wettest quarter (meanTwetQ), mean temperature in the driest quarter 

(meanTdryQ), seasonality in precipitation (precipseas), mean precipitation in the warmest 

quarter (precipwarmQ), elevation, distance to freshwater (distFW), topographic roughness, 

pre-European vegetation type and land-use. Ticks show variables selected based on cross 

validation. SDM algorithms are described in Table 1.
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