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Abstract

Flying insects display remarkable visual abili-
ties which can serve as inspiration for target
detection algorithms. For example, biologi-
cally inspired models of neurons in the drag-
onfly brain have previously been evaluated for
their ability to detect moving targets from a
ground-based robotic platform. Here we evalu-
ate the performance of a model tuned to a spe-
cific biological task (detection of prey and con-
specifics), applied to a very different endeavour
- the detection of airborne drones as viewed by
another drone. We identify the circumstances
for success and failure with the prey-detection
model, whilst varying the computational com-
plexity of the task with a reduction in spatial
sampling. This evaluation provides substantial
insight into how the bio-inspired algorithm may
be generalised for other automatic target de-
tection tasks, such as in the detection of un-
manned aerial vehicles.

1 Introduction

Flying insects have remarkable visual abilities. Using
low resolution, blurry compound eyes, they can identify
behaviourally relevant features in real time. A prime
example of insect visual prowess is the dragonfly. Drag-
onflies have small brains of about one million neurons
and measuring about 2mm across. Despite these rela-
tively limited resources, they can engage in highly dy-
namic pursuits of prey with high success in complex en-
vironments [Olberg et al., 2000]. The algorithm used
by the dragonflies to identify the position of prey is ef-
fective, efficient and compatible with low resolution and
blurry input optics. Such processing seems ideal for mo-
bile robotic applications, where computational resources
are at a premium, especially in airborne applications.

Neurons which respond selectively to small moving
targets, named small target motion detectors (STMDs),
have been discovered through electrophysiological inves-
tigation of the visual systems of various insect species
including the dragonfly [O’Carroll, 1993; Nordström
and O’Carroll, 2006; Keleş and Frye, 2017]. Dragon-
fly STMDs have broad velocity tuning and respond ro-
bustly to moving targets even against moving, clut-
tered backgrounds [Wiederman and O’Carroll, 2011;
Nordström et al., 2006]. The response characteristics
of these STMDs have been modelled using an elemen-
tary STMD (ESTMD) model [Wiederman et al., 2008].
In prior studies, the computational efficiency and ef-
fectiveness of this ESTMD model in detecting small
targets during closed loop pursuits was evaluated us-
ing both computer simulations and when deployed on
a ground-based robotic platform [Bagheri et al., 2017a;
2017b]. However, this prior work was limited to essen-
tially planar pursuits in a ground-based environment.

In the present study, we evaluated the ESTMD model
on a dataset comprised of video footage of an airborne,
moving drone with video footage captured by another
drone. An important characteristic of the ESTMD
model is that like the dragonfly it emulates, the pro-
cessing operates on a low resolution, blurred version of
the input image. We varied the spatial resolution, acu-
ity and size tuning of the model to quantify the trade-off
between computational cost and detection effectiveness.
We also explored several means of improving detection
performance. Our results provide insight into the current
feasibility and limitations of this approach and identifies
avenues for developing a bio-inspired target detection al-
gorithm for the detection of aerial drones.

2 Methods

2.1 Video Capture

Five videos were captured from an airborne Phantom
4 Pro drone of another Phantom 4 Pro drone during a



mostly clear afternoon with patchy cloud. The surround-
ing area included a mixture of hillside, distant cityscape,
parklands and low-lying suburbs. Four videos were cap-
tured at 1080p at 120 frames per second and one at
720p at 30 frames per second. Two video sequences were
recorded from a stationary drone at heights of either 6m
or 12m. The other three videos contained substantial
amounts of ego-motion as the observing drone engaged
in dog-fight pursuits. For analysis, the field of view ex-
tended 84◦ diagonally, leading to 73.7◦ horizontal and
45.7◦ vertical fields of view (16:9 aspect ratio). In total,
over 30 minutes of video footage served as inputs to our
modelling efforts, consisting of 170,551 frames in total
with 57,251 frames corresponding to the stationary and
pursuit experiments where the drone was identified in
the field of view. We purposely designed experiments to
be challenging, by moving the target drone (1) at varying
distances, (2) translated at varying velocities, (3) against
cluttered backgrounds of cloud and landscape scenery
and (4) in the presence of moving distracters (e.g. cars,
pedestrians, etc.).

2.2 Computational model

The ESTMD model was implemented as a discrete time
model with a 1 ms step size. Figure 1 shows an overview
of the model. Additional details of the model implemen-
tation can be found in [Bagheri et al., 2017a]. Insect
optics were represented by subsampling the image after
blurring with a gaussian kernel. Both the distance be-
tween subsampled pixels and the blur size were varied.
The ESTMD model is monochromatic, using the green
channel (recreated from the Bayer mosaic) to emulate
the spectral sensitivity of insect vision.

The spatiotemporally filtered signal is then separated
into two independent, rectified channels for light incre-
ments (ON) and light decrements (OFF). The ON and
OFF channels are separately filtered with a non-linear
temporal filter implemented as:

Yk = uk − γk−1 (1)

where uk is the current input, Yk is the current output,
γk is a state variable of the filter given by:

γk =
ts

ts + τk
uk +

τk
ts + τk

γk−1 (2)

where ts = 1ms is the model sample time and τk is given
by:

τk =

{
5ms, uk − γk−1 ≥ 0

350ms, otherwise
(3)

This temporal filtering represents neuronal adaptation,
observed in putative elements of the target-detection
pathway. Size selectivity is established by suppressing
responses to large features, such as long edges or bars.

To implement this tuning, the separate channels are spa-
tially filtered by convolution with a square kernel with
strong negative gain. The square kernel of the centre-
surround spatial filter, K, was defined by:

K1...n,1 = −a
K1...n,n = −a
K1,1...n = −a
Kn,1...n = −a

Kn−1
2 ,n−1

2
= 2

K = 0 elsewhere

(4)

where n is the length of the kernel edges and
a = 4/(n−1). The size of this kernel was varied between
trials to tune the model to targets of different sizes.

One of the channels is then delayed relative to the
other using a low pass filter:

H(z) =
1
51z + 1

51

z + 49
51

(5)

To create a matched filter for the spatiotemporal signa-
ture of a small, moving target, the ON and OFF channels
are multiplied together to produce the final output.

To match the framerate of the input video with the
higher update rate of the model, intermediate frames
were created by linearly interpolating between frames of
the source video. Model outputs between frames were
then summed to produce an output at the same framer-
ate as the input video. To ensure that the model outputs
were not affected by start-up transients, the first 150
frames were discarded. Three variants of the model were
tested: one which correlated the undelayed ON chan-
nel with the delayed OFF channel and which responded
preferentially to dark targets; one which correlated the
delayed ON channel with the undelayed OFF channel
to respond preferentially to light targets; and, another
which combined the outputs of the light and dark vari-
ants leading to sensitivity to both polarities. The tempo-
ral low-pass filter in Figure 1 was in the position shown
for the variant responsive to dark targets, whereas for
light targets this filter was moved to the opposite chan-
nel.

2.3 Ground truth

Ground truth values for the position of the drone in the
video were prepared by manually selecting the location of
the drone at 200ms intervals based on the full resolution
imagery. Linear interpolation was then used to fill in the
rest of the frames. When testing a range of subsampling
resolutions, the target may disappear near the edges of
the visual field. Therefore to ensure a fair comparison
across varying degrees of subsampling, the ground truth
was limited to only those frames where the drone was



Figure 1: Model overview and example images. The left image shows an example of a high resolution input video
frame with the ground truth location marked in red. The right image shows an example subsampled and blurred
input image (0.69◦ per model unit, 0.55◦ gaussian half-width blur) with red and green pixels indicating the ground
truth and the location of the maximum model output on this frame respectively. Model processing begins with
linear temporal and spatial filtering followed by rectification into separate channels of opposite polarity, non-linear
temporal filtering of each channel and lastly correlation between the two opposite polarity channels. The model
variant shown here is sensitive to dark targets; the low-pass filter on the OFF channel is used to delay that channel
relative to the ON channel prior to correlation. The model thus responds most strongly to light increments which
are preceded by light decrements, as may result from a moving dark target.

visible at all subsampling resolutions tested. The speed
of the drone in the image plane, v, on each frame was
estimated from the ground truth using:

v =

√
(xt − xt−1)2 + (yt − yt−1)2

∆t
(6)

where xt, xt−1, yt and yt−1 are respectively the current
and previous horizontal and vertical coordinates of the
drone and ∆t is the time between frames. Ground truth
values for the size of the drone were created by manually
drawing a rectangular bounding box around the drone at
600ms intervals. The drone size was taken to be equal to
the length of the diagonal of the bounding box. Linear
interpolation was used for intermediate frames.

2.4 Performance evaluation

We evaluate the performance metric entitled ‘Recall’,
by dividing the number of frames on which the drone
was detected, at varying levels of precision, by the total
number of frames on which the target drone was visi-
ble. When the spacing between model units was small

(≤ 0.613◦ ), the target drone was taken to be detected
if the frame’s maximum model output was within a 1◦

radius of the ground truth location. With wider model
unit spacing, we considered the target drone detected if
it was within a 3x3 pixel region in the subsampled im-
age centred on the ground truth location. While this
resulted in regions of different sizes, it ensured that re-
sponses were not missed due to delays inherent in the
model processing. These two analysis regimes are re-
ferred to as High resolution and Low resolution respec-
tively. Frames where the drone was not visible were ex-
cluded from the analysis.

3 Results

The model performance was evaluated for two different
groups of parameters, (1) High resolution and (2) Low
resolution. Low resolution settings are intended to re-
flect more physiologically realistic values. The values of
model sampling resolution, degree of optical blur and
the size of the centre-surround kernel that is included in



each of these groups is defined in Table 1.

3.1 Comparison of dark, light and
combined model variants

Combining outputs from the light and dark model vari-
ants provided a small, overall improvement in Recall at
both High and Low resolution in most conditions. Fig-
ure 2 shows the Recall for each variant when using the
best combination of parameters from Table 1 for each
of the five videos. We used the best combination of
parameters for each video, rather than a single set of
parameters for all videos, to strike a balance between
the models having inappropriate size tuning for a par-
ticular video on the one hand and changing parame-
ters with infeasible frequency (e.g. per frame) on the
other. Improvements in performance between the vari-
ants was more pronounced in the Low resolution group
of parameter variations. Interestingly, with parameters
in the High resolution group, the dark selective variant
performed better in videos with significant ego-motion,
suggesting that on average the light selective variant con-
tained more responses to background than to the target
in these cases. This is a surprising outcome as the drone
was white in colour. Because of the similarity between
model variants, the remainder of the results presented in
this paper are limited to the combined variant.

3.2 Image characteristics affecting
performance for the combined model
variant

As expected for a model tuned to the size and velocity of
a moving target, Recall was influenced by the apparent
speed and size of the drone in the image plane. Figure
3 shows the performance across all frames in the four
1080p videos in three apparent size ranges. The Recall
revealed the velocity tuning of the system, where in the
Low models (A-C) performance decreased at either low
or high target speeds (across all target sizes tested). As
expected, the models struggled to detect the moving tar-
get when it was in the lower ranges of apparent target
size (A,D). Recall in the Low resolution models was dra-
matically improved across the entire speed range when
the target size was within the larger range 2.9◦-4.3◦(C).
In the High resolution models, velocity tuning was less
pronounced, especially in the mid and large target size
ranges (E,F). Recall was greater for larger apparent sizes
across a wider range of apparent speeds. At High resolu-
tion, the model produced responses to artefactual flicker
resulting from rotation of the drone’s rotors, which lo-
cally give the appearance of rapid motion due to succes-
sive increments and decrements in luminance, which may
contribute to the relatively high detection performance
for low speeds.

Figure 2: Comparison of model variants for High reso-
lution and Low resolution. The three videos featuring
substantial ego-motion (i.e. movement of the pursuing
drone) showed lower performance compared to the two
videos where the observer drone was stationary. Recall
shown is the average achieved in all videos in the two
classes if using parameters from Table 1 which give the
best recall for each separate video, i.e. one set of param-
eters from the High resolution set and one from the Low
resolution set for each of the five videos.

3.3 Effect of subsampling and blur on
performance of the combined model
variant

For detection in mobile robotic applications, it is de-
sirable to minimise the complexity of the detection al-
gorithm to minimise power and weight. We therefore
tested how reducing complexity affected Recall by in-
creasing spacing between model units and the strength
of Gaussian blur of the image. Reducing spatial resolu-
tion reduced detection performance, but this was offset
by a decrease in computational demands (Figure 4A).
Note the quadratic reduction in complexity compared
to the linearly decreasing performance. Therefore, if a
lower Recall is feasible, this can have huge impacts in
computational complexity. At fine resolutions, Recall
was greatest with no blur. As the subsampling of the
image becomes coarser, some blurring of the input im-
age results in improved Recall (Figure 4A,B).

3.4 Performance of the combined model
variant with reduced precision

One possible implementation of this algorithm is to iden-
tify segments of the image for further processing. Here,
it is not only the maximum value but rather the N top



Table 1: Model parameters. High resolution settings comprised each combination of the parameters in the first row.
Similarly for Low resolution settings.

Category Spacing between model units Blur kernel size Centre-surround kernel size
(degrees) (degrees) (model units)

High resolution 0.038◦ -0.613◦ 0 - 3.070◦ 3 - 57
Low resolution 0.691◦ - 3.454◦ 0.614◦ - 3.070◦ 3 - 13
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Figure 3: Recall for the combined model for different apparent sizes and velocities of the target for Low, A-C, or
High, D-F, resolution. Separate panels correspond to apparent drone size of A) 0 to 1.43◦ ; B) 1.43◦ to 2.88◦ ; and,
C) 2.88◦ to 4.32◦ . The stated upper limit of each range is excluded from the range. D-F have matching drone size
ranges. Bins where the 95% confidence interval for the detection rate was wider than 30% are omitted. Error bars
show the 95% confidence interval for the Recall assuming a Bernoulli distribution.

values that could subserve further processing. We there-
fore examined whether the target was contained within
the top 10 values (Figure 5A). Cumulative recall can
be increased significantly by including additional ranks.
However, the prominence of the contribution of rank 1
compared to the others indicates that generally if the
model output associated with the drone is not the great-
est output in the scene, it is overwhelmed by many other
strong responses to the background. Continuing to in-
clude additional ranks further improves Recall in both
High resolution and Low resolution settings, albeit at
different rates (Figure 5B). The benefit of including ad-
ditional ranks quickly diminishes and it is not feasible to
achieve 100% recall in this way; even including the top

1,000 ranks achieves only approximately 90% recall in
this case. For 0.614◦ spacing, 1,000 ranks covers more
than 12% of the visual field.

3.5 Presence of strong distracters during
camera movement

Targets may be missed as a result of low response to the
target itself, leading to false negatives, or due to over-
whelming responses to background features, leading to
false positives. We sought to determine whether false
positives contributed to the lower performance achieved
in videos with ego-motion versus those with a stationary
observing drone. We examined the responses to back-
ground features during movements which led to the tar-
get response not being maximal, such as gradual panning



Figure 4: Effect of spacing between model units and blur. The ‘additional Recall’ shown here is the Recall achieved
across all frames in the four 1080p videos less the Recall which would be achieved through random guessing. Data
shown is normalised by dividing the additional Recall for a given blur and sub-sampling by the maximum additional
Recall achieved for any blur and sub-sampling combination tested. A) Normalised additional Recall as a function of
spacing between model units. Solid lines show normalised additional Recall for different Gaussian blur half-widths.
The dashed line corresponds to the normalised number of model units in the scene, corresponding to computational
demands. B) Normalised additional recall for different spacing and blur half-widths.

Figure 5: Inclusion of additional ranks of output per frame. A) Bars indicate the incremental improvement in recall
for including additional ranks. Lines show the cumulative recall as additional ranks are included. B) Recall achievable
by including many additional ranks of output on a video with significant ego-motion.



Figure 6: Example ESTMD model output in response to video segments that include strong distracting features.
A) Trace of model outputs for Low resolution settings for part of a video where the observer and target drone are
initially stationary until shortly after 1 second. After that time, the target drone begins moving and the observer
pans to track it. Panning becoming swifter around 2 seconds. Lines show the largest response on each frame, 10th

largest and the responses generated by the target. B) Location of top 10 model outputs on a frame during panning
matching the trace in (A). (C) and (D) are equivalents of (A) and (B) but for High resolution settings. Note the
difference in false positive locations between (B) and (D).

movements. During panning movements, background
features produce strong distracting responses for both
High and Low resolution models (Figure 6A,C).

Examples of such features are regions with high lo-
cal contrast, such as tops of trees viewed against sky
(Figure 6B,D). Although a substantial response to the
target may be generated, this is overwhelmed by many
distracting background features as shown by the target
response in Figure 6C falling below the 10th largest non-
target response for most of the time window following
the commencement of a panning movement.

3.6 Use of thresholds and the maximum
operation to improve precision

For the detection events produced by the algorithm to
be useful, these must be sufficiently reliable indicators
of the presence of a target. In other words, there must
not be excessive numbers of false positives. This is not
reflected in the Recall metric. We investigated whether
a threshold can be used to reduce the number of false
positives. Here we define target responses to be the
maximum model output within the region described in

‘Performance Evaluation’ under Methods on each frame.
Outputs outside this region are defined as background
responses. For this analysis, we included frames of the
videos where no drone was present and so only back-
ground responses were present. Applying a small thresh-
old to the model outputs excludes a high proportion
of background responses without removing a significant
number of target responses (Figure 7A). In the example
shown in Figure 7, almost all target responses were above
a threshold of about 10−7 whereas almost all background
responses were not, which is reflected in the conditional
probabilities of responses being over the threshold given
that they are a target response or a background response.
If considering only the maximum response on each frame,
then applying a threshold excludes background and tar-
get responses at a much more similar rate (Figure 7B).
This is reflected in similar conditional probabilities of
these responses being over a threshold given that they
are the maximum response on a frame and are either a
target response or background response. Without ap-
plying a maximum operation, the probability of a given
output on a subsampled pixel corresponding to a target



when considering all responses on each frame is very low
for each threshold tested (Figure 7C). Even at thresholds
which exclude the majority of target responses, model
outputs are not reliable indicators of the presence of a
target: compare 7A and 7C at high thresholds. If only
considering responses which are the maximum on each
frame, detection outputs are much more reliable indi-
cators of the presence of a target: compare 7C and 7D.
Combining the maximum operation with a threshold can
further increase reliability, as shown by the solid line in
7D moving above the dotted line for a range of thresh-
olds.

4 Discussion

The ESTMD model achieved much more reliable detec-
tion when the observer was stationary than when there
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Figure 7: An example of the effect of using thresholds
and a maximum operation on precision for a video with
ego-motion and High resolution. A) The probability of
a response being over threshold given that it is either
a target or background response. B) The probability of
the maximum value for the frame being over threshold
given that it either a target or background response. C)
The probability of a response that is over threshold cor-
responding to a target. D) Probability of the maximum
response for the frame corresponding to a target, with
or without also applying a threshold.

was significant ego-motion. Unsurprisingly, the complex
outdoor setting provided many spatial features which,
when viewed by a camera which is smoothly chang-
ing its direction, can match the spatiotemporal profile
that ESTMD is responsive to. The observing drone in
this study tended to engage in long, relatively grad-
ual panning motions, which created substantial peri-
ods of large-scale background motion. Conversely, in-
sects use various strategies to limit apparent background
motion. Examples of these include using short, rapid
changes of gaze rather than slow panning movements
[van Hateren and Schilstra, 1999; Geurten et al., 2010;
Lin and Leonardo, 2017]; using sideways translational
movements in place of rotations [Olberg et al., 2007;
Kassner and Ribak, 2018]; and, predictive tracking [Mis-
chiati et al., 2015]. These strategies may reduce the
prevalence of false positives. Object detection in insects
is also influenced by behavioural state [Maimon et al.,
2009] and differences in optic flow [Zabala et al., 2012].
The algorithm described in this paper did not make use
of these potential additional sources of information.

In its current form, the ESTMD model would not se-
lectively respond to target drones in the visual environ-
ment due to the low precision. However, it is noteworthy
that under Low resolution settings, the model discarded
more than 99.8% of the incoming image information be-
fore the first temporal filter. This form of modelling
therefore, is likely well suited as a pre-filter, removing
redundant information before further feature identifica-
tion methods can be applied. Detection methods which
are computationally efficient may be useful to generate
proposals for more reliable yet expensive methods [Ren
et al., 2017]. It must be noted that we made no at-
tempt to tune the bio-inspired algorithm for the sizes
and velocities expected with spatiotemporal signatures
of the target drone. Moreover, no attempt was made
here to adjust the velocity tuning of the model to suit
the movement profile of the drone. Our results indicated
that performance may be improved by combining paral-
lel pathways tuned to either light or dark targets. Future
research will investigate how the application of different
tuning techniques, as well as the implementation of pur-
suit strategies that minimise ego-motion, improve the
ability to detect moving drones in complex visual envi-
ronments.
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