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Abstract

A set of neurons in the dragonfly brain re-
spond selectively to small moving targets. It
is proposed that these small target motion de-
tectors neurons (STMDs) subserve the dragon-
fly’s aerial pursuits of prey. Behavioural studies
have shown that dragonflies use internal mod-
els of prey position and trajectory during pur-
suits. How this target state estimation is car-
ried out in the brain is poorly understood, how-
ever physiological studies suggest two proper-
ties of the dragonfly’s tracking system. Firstly,
‘selective attention’ whereby a competitive pro-
cess ensures responses to all but one visi-
ble target are suppressed. Secondly, a spa-
tially inhomogeneous ‘predictive gain modula-
tion’ whereby responses to a target’s estimated,
continuous trajectory are enhanced. Previ-
ous research presented a biologically-inspired
tracker based on ‘elementary small target mo-
tion detectors’ (ESTMD), ‘matched filter’ units
proposed to underlie physiologically observed
STMD responses. However, previous studies
did not include a comparative evaluation of
alternative tracking methods for use with the
ESTMD model. Here we present a grid-based
estimator for use with the ESTMD detection
model which incorporates an input-selection
method analogous to selective attention. We
compare our novel approach to, among others,
the biologically-inspired tracker and find that
our tracker shows better performance in our
test scenario.

1 Introduction

Aerial predators must be able to successfully detect and
pursue their prey in order to survive. Where such pur-
suit is visually guided, the predator must be able to

rapidly detect, localise and track prey amongst the com-
plex visual environments encountered in natural settings.
Species of effective aerial predators, the dragonflies, en-
gage in highly dynamic, visually guided pursuits of prey
with high rates of success [Olberg et al., 2000]. These
pursuits are controlled by a tiny brain with around two
millions neurons, suggesting that the dragonfly’s tar-
get detection algorithm is both effective and efficient.
Investigations into the neuronal basis of target detec-
tion by dragonflies and other insect species have re-
vealed neurons which respond selectively to small moving
targets, called small target motion detectors (STMDs)
[O’Carroll, 1993; Nordström et al., 2006]. These neu-
ronal responses are tuned to target velocity and size,
whilst sensitive to contrast, and thus appear to repre-
sent an ambiguous measurement of these variables. In
dragonflies, it is not presently feasible to directly inves-
tigate the correlations between STMD activity and be-
haviour because current methods for recording neuronal
activity require immobilisation of the animal. It is thus
unclear how dragonflies are able to overcome the appar-
ent shortcomings of STMDs as target detectors to infer
the position of prey sufficiently accurately to enable suc-
cessful capture. Understanding how this is achieved may
facilitate the application of efficient detectors inspired by
STMDs in applications including autonomous robotics.

Using a model of dragonfly target detecting neurons,
the elementary small motion detector (ESTMD) model,
[Wiederman et al., 2008] ourselves and other researchers
have investigated bio-inspired [Bagheri et al., 2017a;
2017b] and statistics-based tracking methods [Wang et
al., 2019] for differentiating targets from background
clutter. Moreover, the combination of ESTMD and bio-
inspired tracking has been evaluated against other object
detection algorithms [Bagheri et al., 2017b]. However,
these studies have not compared how well alternative
tracking methods, or the absence of tracking, influence
closed-loop tracking tasks based on ESTMD outputs. In
this paper we present a comparative evaluation of sev-



eral tracking methods, including the bio-inspired tracker
described by Bagheri et al. We quantify how well each
of these methods performs given the presence of distrac-
tors and different delays in effecting changes in pursuer
angle. We find that that the tracker proposed in this pa-
per achieves greater performance than the alternatives
tested.

2 Related work

Discrete state estimation may be framed as a problem
of finding, for every time step k, an optimal state esti-
mate xk given z1:k, the history of measurements up to
time step k. For linear systems meeting certain crite-
ria, a Kalman filter is an optimal estimator. Various
estimators have been developed for non-linear systems
such as: the extended Kalman filter, unscented Kalman
filter [Wan and van der Merwe, 2000], grid-based esti-
mators and particle filters [Arulampalam et al., 2002].
Grid-based estimators and particle filters each use finite
samples to approximate the continuous state probabil-
ity distribution. Grid-based estimators divide the range
of continuous states into discrete points and maintain
a progressively updated set of weights representing the
conditional probabilities of these discretised states. Par-
ticle filters use finite random samples of the state space,
weighted according to the estimated probability of each
state, with the continuous probability distribution func-
tion represented implicitly via the weights. Whichever
approach is used for estimation, a model relating the
measurements to the estimated states must be decided
upon, and deriving this will not always be straight for-
ward.

The estimation method used by the dragonfly is un-
known, however some properties of its target track-
ing system have been revealed through electrophysio-
logical and behavioural studies. Electrophysiology is a
body of techniques by which the electrical responses of
neurons to stimuli in living, and even behaving, ani-
mals can be measured quantitatively. Such techniques
enabled the identification of several distinct classes of
STMD. Different STMDs produce responses to targets
present in differently sized and positioned regions of
the visual field, these regions being called the neu-
ron’s receptive field [Barnett et al., 2007]. A drag-
onfly STMD with a receptive field spanning an en-
tire visual hemisphere has shown progressive enhance-
ment of responses to targets following continuous paths
[Dunbier et al., 2012]. This enhancement is subserved
by a predictive focus of gain modulation whereby re-
sponses to a target in parts of the visual field ahead
of the target’s past trajectory are enhanced [Wieder-
man et al., 2017]. It is spatially localised, but not di-
rectionally selective and is accompanied by a suppres-
sion of responses elsewhere [Wiederman et al., 2017;

Fabian et al., 2019]. The same neuron has also been
found to respond selectively to one of several targets
present in its receptive field, indicating selective atten-
tion [Wiederman and O’Carroll, 2013]. The combina-
tion of selective attention and the predictive proper-
ties of facilitation suggest a role for STMDs in enabling
an estimation of the future states of the target. Such
predictive state estimation is suggested by behavioural
studies whereby pursuits of simulated prey appeared to
rely upon internal models of the prey’s position [Mis-
chiati et al., 2015]. The responses of visual neurons in
other insects has been shown to be influenced by be-
havioural state and by motor commands [Fujiwara et
al., 2017], suggesting that proprioceptive inputs and ef-
ference copies of motor commands may be available for
the dragonfly’s target state estimation system.

Here we present an empirically derived observation
model for relating the ESTMD outputs to the speed of
the target. Furthermore, a direct comparison of the bi-
ologically inspired facilitation tracker to other trackers
based on the same ESTMD outputs. Finally, we pro-
vide an evaluation of the influence of saccade duration
on tracking success when using the ESTMD model for
target detection.

3 Methods

To evaluate the performance of the trackers, we per-
formed closed-loop simulations of a target moving
through a natural background in the presence of mov-
ing distractors. Based on the outputs of the ESTMD
model, each tracker guided panning movements of the
observer with the objective of keeping the target inside
the visual field. Performance was measured by compar-
ing how long the target remained in the visual field across
different test scenarios. This pursuit-based method for
measuring performance enabled comparisons with previ-
ous evaluations of the facilitation-based tracker, which
used closed-loop pursuits. Evaluating performance in
this way required challenging tracking scenarios which
would produce failures.

3.1 Tracking scenario

Backgrounds were generated by projecting cylindrical
panoramic images of natural scenes on to a plane and
then drawing a target and distractors on to it. The
panoramic images covered a variety of natural and man-
made environments [Brinkworth and O’Carroll, 2008].
Targets were drawn as a square with nil luminance
and sides spanning approximately 1◦ of the visual field.
The target moved at constant altitude following a pre-
determined azimuthal trajectory. These trajectories
were randomly generated by beginning at an angular
velocity of 120 ◦ s−1, moving rightward across the vi-
sual field, and then every 500 ms selecting a new random



angular velocity from a normal distribution with mean
0 ◦ s−1 and standard deviation 80 ◦ s−1. Targets acceler-
ate towards the new velocity set-point with an angular
acceleration of 80 ◦ s−2 . At the beginning of a trial, tar-
gets entered the visual field from the left-hand side. This
gave rise to trajectories with a variety of angular veloc-
ities which commonly featured slow target motion. Pe-
riods without significant target motion emphasised the
importance of target tracking to ignore distractors.

The ESTMD model is responsive to features with a
spatiotemporal profile of a small moving target [Wieder-
man et al., 2008; Wiederman and O’Carroll, 2011]. Al-
though natural scenes feature diverse spatial features,
only a subset of these will produce relevant distract-
ing clutter for the ESTMD model during translation or
rotation of the observer. Previous studies have shown
that these features are surprisingly rare [Wiederman and
O’Carroll, 2011]. To reliably introduce relevant clutter
into the scene to create challenging tracking scenarios,
we drew distracting features with randomised luminance
and the same spatial profile as the target in random po-
sitions in 3-D space ahead of the observer. These dis-
tractors were placed after the first turn of the observer,
and were replaced after each subsequent turn. Between
turns, the observer moved directly forward through the
3-D environment such that distractors moved progres-
sively through the visual field. The naturalistic backdrop
was assumed to be distant to the observer and therefore
unchanged by translation of the observer. These im-
ages were then blurred (Gaussian filter, 1.4◦ full width
at half maximum) and subsampled (approximately 1◦

intervals) to reflect the limited acuity and resolution of
compound eyes. The resulting images were processed us-
ing the ESTMD model to produce inputs for the trackers.

3.2 ESTMD model

The ESTMD model combines linear spatial and tempo-
ral filters with several non-linear operations to produce a
non-linear matched filter for small moving targets. Input
luminance values are filtered with a digital linear tem-
poral bandpass filter representing the temporal aspects
of early visual processing, including the photoreceptors
and large monopolar cells. The 9th order filter [Bagheri
et al., 2015] has the form:

yk =

9∑
i=1

biLk−i −
9∑

j=1

ajyk−j (1)

where yk are the filter outputs, Lk are the input lumi-
nance signals and the filter coefficients a andb are given
in Table 1. Centre-surround antagonism in the lamina
is represented by a linear spatial filter with kernel:− 1
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The signal is then half-wave rectified into two separate
channels: one for positive values (ON) or negative val-
ues (OFF). This reflects separation of responses to lumi-
nance increments and decrements into separate neuronal
pathways in the insect brain. Non-linear adaptation on
these separate channels is represented by filtering each
channel with a non-linear temporal filter given by:

Yk = uk − γk−1 (3)

where uk is the current input, Yk is the current output,
γk is a state variable of the filter given by:

γk =
ts

ts + τk
uk +

τk
ts + τk

γk−1 (4)

where ts = 1 ms is the model sample time and τk is given
by:

τk =

{
10 ms , uk − γk−1 ≥ 0
100 ms , otherwise

(5)

The values of τk reflect the time course of physiologically
observed adaptation [Wiederman et al., 2008]. After the
non-linear filter, the signal is thresholded to a minimum
of zero such that the signal is always non-negative. To
match the size selective responses of STMD neurons, the
signal is filtered with a strong linear spatial filter with
kernel: 

−1 −1 −1 −1 −1
−1 0 0 0 −1
−1 0 2 0 −1
−1 0 0 0 −1
−1 −1 −1 −1 −1

 (6)

The signal is again thresholded to zero. To reproduce the
velocity tuning of STMD neurons, one of the channels is
then delayed using a low-pass filter given by [Bagheri et
al., 2015]:

H(z) =
1
51z + 1

51

z − 49
51

(7)

For a low luminance target selective variant of the
ESTMD model, the OFF channel is delayed and vice
versa for a high luminance target. We tested a variant
which is dark target selective against a variant which
combines the outputs of both a light target selective and
dark target selective variant but found little difference
between the two and so have not separately presented
these results.

3.3 Probabilistic tracker

Our probabilistic tracker is based on an approximate
grid-based estimator. That is, the continuous position
states, xk, and speed states, vk, of the target were ap-
proximated by a finite number of discrete points xik
and vjk. The direction of movement was not estimated.
The position state was approximated by a sub-pixel grid



Table 1: Early visual processing filter coefficients
1 2 3 4 5 6 7 8 9

a 0.0001 -0.0012 0.0063 -0.0222 0.0609 -0.1013 0.2363 -0.3313 0.1524
b -5.1664 12.2955 -17.9486 17.9264 -12.8058 6.5661 -2.3291 0.5166 -0.0542

formed by the union the centres of the pixels and a set
of points halfway between each of the pixel centres verti-
cally, horizontally and diagonally. The resulting grid for
a H × V pixel image contained 4HV –2(H + V ) + 1 grid
points. Each discrete position state xik was assigned a
weight, mi

k|k−1, representing the conditional probability
of that state existing given the history of measurements,
with the weight defined by:

mi
k|k−1 = p(xk = xik|z1:k−1) (8)

where xk is the position state and z1:k−1 is the history of
measurements up to time k− 1. The speed state weight
nik|k−1 is defined similarly:

nik|k−1 = p(vk = vik|z1:k−1) (9)

where vk is the speed state and vik are discrete velocity
points from nil to 800 ◦ s−1 at 0.48 ◦ s−1 intervals. In
addition to the target states, the tracker maintained a
binary flag, Ak, representing whether the target is cur-
rently acquired. The tracker was updated every four
frames. To find the measurement for a time step, zk, the
ESTMD outputs for the current frame and the preceding
three were summed into a single frame and then a single
output was selected, with the rules for selection differ-
ing based on whether the target is acquired. To initialise
the tracker, the speed and position weights were set to be
uniform and the target was assumed to not be acquired.
The tracker implemented the following procedure:

1. Select an ESTMD output to use for updating the
tracker. The selection methodology is described be-
low. If no outputs meet the selection criteria then
the tracker is updated independently of the mea-
surements . The selected output, if any, is denoted
by zk, comprising a pixel position and output mag-
nitude denoted by |zk|.

2. Evaluate nik (speed prediction) using:

nik|k−1 ,
Nv∑
j=1

nik−1|k−1p(v
i
k|v

j
k−1) (10)

where Nv is the number of discrete velocity val-
ues and p(vik|v

j
k−1) is given by a normalised 2-D

Gaussian centred on vjk−1 with standard deviation

0.48◦ s−1 evaluated at vik.

3. If an output was selected and |zk| is above the
threshold of 5.2× 10−3, evaluate nik|k (speed up-

date) using:

nik|k =
nik|k−1p(zk|v

i
k)∑Nv

j=1 n
j
k|k−1p(zk|v

j
k)

(11)

where p(zk|vik) is evaluated using the observation
model described below. Otherwise, evaluate nik|k
with:

nik|k =
nik|k−1∑Nv

j=1 n
j
k|k−1

(12)

4. Evaluate mi
k|k−1 (position prediction) by convolv-

ing mi
k−1|k−1 with the position prediction kernel de-

scribed below.

5. If the selected measurement zk is above the thresh-
old of 5.2× 10−3, evaluate mi

k|k (position update)
using:

mi
k|k =

mi
k|k−1p(zk|x

i
k)∑Nx

j=1m
j
k|k−1p(zk|x

j
k)

(13)

where p(zk|xik) is a normalised 2-D Gaussian cen-
tred on xik with standard deviation 0.5◦ evaluated
at the position of the measurement zk and Nx is
the number of grid points. Otherwise, evaluate mi

k|k
with:

mi
k|k =

mi
k|k−1∑Nx

j=1m
j
k|k−1

(14)

6. Evaluate φk = max(mi
k|kn

j
k|k), which is used as a

measure of the certainty about the target states at
time step k.

7. Set the acquisition flag state, Ak, according to:

Ak =


true , φk > 1× 10−5

false , φk ≤ 1× 10−5 and
max(mi

k|k) < 4× 10−3

Ak−1 , otherwise

(15)

8. If all of the following conditions are met then exe-
cute a turn with magnitude determined as described
below:

(a) max(mi
k|k) is more than 5◦ from the horizontal

centre of the visual field;

(b) max(mi
k|k) > 5× 10−8;



(c) a saccade is not in progress and at least 40 ms
have elapsed since the end of the most recent
saccade; and

(d) Ak is true.

9. If a turn was executed, remap the values of mi
k|k by

shifting the weights azimuthally such that the posi-
tion of max(mi

k|k) is centralised horizontally in the
visual field. The set of grid points which do not map
to other grid points, i.e. because they are close to
one side of the visual field, are given a uniform value
calculated to achieve the result that

∑Nx

i=1m
i
k|k = 1

after the remapping.

Pursuit logic

The same pursuit logic is used for all trackers based on
the estimated target position. Let θ be the estimated
azimuthal position of the target relative to the centre of
the visual field. A turn is executed if |θ| > 5◦. Let ∆θ be
the angle of the turn such that the viewing angle after
the turn, θ′ is given by:

θ′ = θ + ∆θ (16)

When turning towards a target, two possible strategies
are to turn in order to centre the visual field at the po-
sition of the target at the time the turn completes, or to
centre at the position of the target at the time the turn
is initiated. We tested both alternatives. The angle of
a turn to the target’s position at the start of the turn is
simply given by:

∆θ = −θ (17)

The angle of a turn to the target’s expected position at
the end of the turn is given by:

∆θ = −θ + sign(θ)×
(

(TS + TT )× 60 + 3

)
(18)

where TS is the saccade duration, TT is the period of
time for which model outputs are ignored following a
turn and the sign(θ) function is defined as:

sign(θ) =

{ 1 , θ > 0
−1 , θ < 0
0 , θ = 0

(19)

Observation model

The outputs of the ESTMD depend upon local con-
trast, the target velocity and its size. Accordingly, the
ESTMD outputs are ambiguous measurements of the
target states. To construct a suitable observation model,
we generated imagery using one of the natural back-
grounds with a 40◦ horizontal and 20◦ vertical field of
view. We then rotated the background by 15◦ at 60 ◦ s−1

before halting the background motion and introducing

three 1◦×1◦ nil luminance square targets at different alti-
tudes at the left-hand side of the visual field. The targets
moved at the same speed from left to right at constant al-
titude. We simultaneously drew the same targets on to a
white background. We summed the outputs of the model
across four frames and identified the locations where this
summed output exceeded 0.01 for targets drawn on the
white background. We treated those locations as being
target-induced responses, and recorded the outputs gen-
erated by the naturalistic background at those locations.
The targets moved across the field of view until exiting
at the right-hand side, at which point we again rotated
the background by 15◦ at 60◦ s−1 before again drawing
targets. This was repeated 24 times, that is until the
whole 360◦ background had been scanned. From these
outputs, we constructed histograms of the responses of
the model for the given target velocity using response
magnitude bins defined by edges from 0 to 0.5 at 0.01
spacing. The final bin included all responses greater than
0.5. Repeating this exercise for target velocities between
20 ◦ s−1 and 800 ◦ s−1 produced a set of histograms of
responses for each velocity. From these we calculate the
probability mass function p(zk|vik), giving the probabil-
ity of observing an ESTMD output zk if the target is
moving at speed vik.

Input selection
To emulate a selection mechanism whereby only the most
salient output is used for updating the state estimate, at
most one output per frame is used to update the tracker.
Here, we define the notion of salience as being the extent
to which the output agrees with the current estimate of
the states. We measure this with αk, defined as:

αk(p) =
∑
i∈Ix

Nv∑
j

β(p, xik−1, v
j
k)mi

k−1|k−1n
j
k|k−1 (20)

where: p is a pixel of the input image; β(p, xik−1, v
j
k) is a

mask representing whether or not the target could have
moved to position p from xik−1 with the speed vjk during
the update interval; and, Ix are the indices of the set of
sub-pixel grid points which fall within a 5×5 patch cen-
tred on p. To determine β for each pixel p, we calculate
the minimum and maximum distances from the centre
of pixel p to the edges of nearby pixels. This provides
a set of minimum and maximum distances which when
divided by the update period of the tracker gives a set
of speed intervals Ip which could have resulted in the

target moving from xik−1 to p. The mask β(p, xik−1, v
j
k)

is then defined by:

β(p, xik−1, v
j
k) =

{
1 , if vjk ∈ Ip
0 , otherwise

(21)

The same set of masks is used for every p. Conceptu-
ally, αk represents the probability that at the previous



timestep, the target was in a position which could have
moved to the pixel under consideration with a velocity
that produced the observed magnitude of response.

Update of position weights

The position weights, mi
k, are updated by convolving

mi
k−1 with a 2-D kernel K which has its values defined by

the velocity weights. Because direction is not estimated,
the kernel is symmetrical and the same is used for each
grid point. The kernel K is defined by:

Kf,g = kxp(v
i
k = vreq|z1:k−1) (22)

where f and g are integers in the range [−2, 2], kx is
a normalisation constant, vreq is the speed from vj that
most closely matches the speed required to move to point
[f, g] from the centre of the kernel during the update
period.

Fixed speed (FS) variant

It was apparent from our early investigations that the
combination of the statistics of input target velocities
and the observation model had the effect that the speed
weights would converge to a distribution similar to that
shown in Figure 1. As such, we separately evaluated a
variant of the probabilistic tracker which did not update
the speed weights njk based on measurements. Instead,
the speed weights shown in Figure 1 were used through-
out. The two variants will henceforth be referred to as
the fixed speed (FS) and non-fixed speed (NFS) variants.
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Figure 1: Fixed speed weights used in the FS variant of
the probabilistic tracker

3.4 Facilitation tracker

The facilitation tracker aims to approximate the spatial
enhancement of responses to targets moving on contin-
uous paths observed in dragonfly neurons. We adapted
the publicly available implementation of the tracker from
[Bagheri et al., 2017a] to suit our simulation environment
and used parameters which were reported by Bagheri et
al. to perform well. Briefly, the tracker maintains a gain
value for every pixel in the image. When a target is
detected, the gain values are increased at the target’s

Table 2: Facilitation tracker parameter settings.
Parameter Value

Facilitation kernel size 7◦

Facilitation time constant 200 ms
Elementary motion detector time constant 40 ms

Output threshold 0.001
Facilitation gain 625

projected future position. Gain values elsewhere grad-
ually decay. The tracker is updated every millisecond,
except during turns or the 40 ms following a turn. To
estimate the position of the target, the output of the
ESTMD model is multiplied pixelwise by the gain values
and then the location of the maximum output is taken
to be the target position. We used the parameters in
Table 2.

3.5 Constant gain field (CG)

If the target is kept close to the centre of the visual field,
then the facilitation tracker could be expected to result
in high gain in the centre of the visual field and lower gain
elsewhere. To determine whether dynamically updating
the gain field offers a performance advantage over simply
assuming constant gain in the centre, we define a gain
field kg(x, y) as:

kg(x, y) =

{
625 , |xh − x̄h| < 5
1 , otherwise

(23)

where xh is the horizontal position of the pixel and x̄h is
the horizontal centre of the visual field. The modulated
outputs IG are then calculated with:

IG(x, y, k) = kG(x, y)I(x, y, k) (24)

Turns were executed if the location of the maximum was
more than 5◦ from the centre of the visual field and at
least 30 ms had elapsed since the last turn. The magni-
tude of turns was calculated in the same way as for the
other trackers.

3.6 Saccade trajectories

Behavioural measurements of saccade magnitudes and
durations in dragonflies have shown that dragonflies ex-
ecute saccades over a period of approximately 50 ms [Lin
and Leonardo, 2017]. This is a significant duration given
the temporal characteristics of the ESTMD filter. Dur-
ing saccades, the dragonfly’s head achieved angular ve-
locities above 1400 ◦ s−1 requiring peak angular accel-
erations exceeding 5.6× 104 ◦ s−2. The duration of be-
haviourally observed saccades were mostly uniform de-
spite differences in the total angular displacement of the
saccades. Previous studies [Bagheri et al., 2015] used
instantaneous, and therefore unrealistic, changes of the



viewer angle. To emulate realistic saccades, we gener-
ated turns of fixed duration having a triangular velocity
profile with the maximum velocity determined so as to
achieve the desired angular displacement:

vmax =
2(θf − θi)

∆t
(25)

where vmax is the maximum velocity of the saccade, θi
and θf are respectively the start and end angles of the
saccade and ∆t is the duration of the saccade.

3.7 Performance evaluation

At every timestep, the azimuthal angle between the cen-
tre of the visual field and the target was calculated to
determine whether the target was visible or not. If the
target was outside the visual field for 500 ms consecu-
tively, the simulation was terminated. Previous studies
involving the facilitation tracker used a horizontal field
of view of 94◦ and evaluated tracking based on whether
a simulated pursuit was eventually successful whether
or not the target left the field of view during pursuit
[Bagheri et al., 2015]. Performance was evaluated in two
different ways: firstly, comparing how many time steps
elapsed before the target first exited the visual field; and,
secondly comparing the time at which the simulation was
terminated. The latter method allows for more direct
comparison with the results of Bagheri et al. The maxi-
mum performance result was 30 s of successful tracking,
indicating that the tracker had kept the target in the
visual field for the entire duration of the target’s ran-
domised trajectory.

4 Results

We compared the performance of the trackers on the
same sets of tracking scenarios and quantified how the
presence of distractors, the length of saccades and the
movement of the target affected performance. All of the
results presented here are based on at least 30 target
trajectories for each of the 15 backgrounds used.

4.1 Effect of distractor strength

We evaluated the effect of adding distractors with a
different simulated forward velocity on tracking perfor-
mance. The introduction of distractors significantly in-
creased the difficulty of the target following task, and
resulted in lower performance for all trackers: Figure 2.
However, the probabilistic trackers showed greater ro-
bustness in the presence of distractors, indicated by
the corresponding curves in Figure 2 being further to
the right than for the other trackers. Interestingly, the
FS variant of the probabilistic tracker performed better
than the NFS variant for forward velocities of 1 m s−1

and 3 m s−1: Figure 2A & B. At a forward velocity of

6 m s−1, the probabilistic NFS variant performed bet-
ter than the FS variant: Figure 2C. This result may be
due to poor agreement between the FS variant’s speed
weights and the slow apparent motion of the distractors
for the lower forward velocities. For slow distractors, the
facilitation tracker performed well and surpassed the CG
tracker, indicating that the dynamic adjustment of the
gain field was beneficial in this case: Figure 2A. How-
ever, for fast moving distractors, the facilitation tracker
produced worse performance than no tracking: Figure
2B - D. Figure 2D shows the performance of the trackers
if evaluated on the basis that failure does not occur until
the target has been outside the visual field for at least
500 ms.

1m/s 3m/s

6m/s 6m/s

Figure 2: Effect of distractors on tracker performance.
Lines show, for each tracker, the proportion of trials
which had failed by the time indicated in the abscissa.
Lines terminate at the time by which all trials had failed.
The observer moves towards the distractors at the veloc-
ity shown in the label. A-C) Failure is taken to occur
when the target leaves the field of view for the first time.
The visual field is 60◦ horizontal × 30◦ vertical. D) Fail-
ure is taken to occur when the target has been offscreen
for 500 ms consecutively. The visual field is 90◦ horizon-
tal x 45◦ vertical.

4.2 Combination of saccade delays and
distractors

We evaluated whether the length of saccades affected
performance in the presence of distractors. Greater sac-
cade delays compounded the reduction in performance
due to distractors, shown by the downward slopes of the
curves in Figure 3. When attempting to predict the lo-
cation of the target after a saccade, the magnitude of
the required turn angle increases linearly with the sac-
cade duration. When using a predictive turn with 100 ms
saccade duration, the smallest turn that could be exe-
cuted was 11◦, such that a turn in the wrong direction
would was likely to cause the target to leave the visual



field. Predictive turns resulted in lower performance
for a saccade duration of 100 ms: compare Figure 3A
and B. Without a predictive turn, similar performance
was achieved at 50 ms and 100 ms: Figure 3A. Predic-
tive turns resulted in greater performance for saccade
durations of 25 ms and 50 ms: compare Figure 3A and
B. The FS variant of the probabilistic tracker showed
greater performance than the NFS variant for a saccade
duration of 25 ms and forward velocity of 3 ms: Figure
3B and C. Because distractors were not drawn during
saccades and new distractors were placed at the end of
each saccade, all other things being equal a longer sac-
cade duration has the effect that distractors will be vis-
ible for a shorter period of time before another turn is
required to follow the target. Distractors will exhibit
gradually increasing apparent motion over time as the
observer moves closer to the distractors. In light of the
observation in the preceding sub-section that the proba-
bilistic FS variant achieves better performance for slow
distractor motion, the advantage for the probabilistic FS
tracker at 25 ms and 3 m s−1 reflects the slower apparent
distractor motion.

Figure 3: Effect of saccade duration with distractors.
Failure was taken to occur when the target first left the
field of view. Lines connect the median times to failure
for each forward velocity value and vertical bars show the
interquartile range. The same saccade durations were
used for each variant but the lines have been offset hori-
zontally for clarity. A) Performance for the probabilistic
tracker NFS with a field of view of 60◦ × 30◦ and not
using a predictive turn during pursuit. B) As in A but
using a predictive turn. C) As in B but using the prob-
abilistic FS tracker

To compare the probabilistic and facilitation tracker
in a way which more closely matches prior evaluation
by Bagheri et al., we also compared these two by eval-
uating failure based on when the target was outside the
visual field for more than 500 ms consecutively. Under
this analysis, the probabilistic tracker performed sub-

stantially better than the facilitation tracker for a for-
ward velocity of 1 m s−1 and when using instant turns:
Figure 4A&B. For a forward velocity of 3 m s−1, the fa-
cilitation tracker displayed better performance than the
probabilistic for 50 ms or 100 ms saccade durations. In-
terestingly, a 50 ms saccade matches the behaviourally
observed dragonfly saccade duration and 3 m s−1 is clos-
est to behaviourally observed maximum pursuit speeds
of 4 m s−1 [Lin and Leonardo, 2017], and as such these
conditions are the most naturalistic. While in each case
tracking was lost well before the end of the trial, success-
fully pursuing the target for more than 1 s is sufficient
for a typical dragonfly prey pursuit which lasts 348 +/-
110 ms [Lin and Leonardo, 2017].

Figure 4: Time to failure with different saccade dura-
tions and forward velocities. Time to failure is measured
by when the target has been outside the visual field for
more than 500 ms consecutively. Lines connect the me-
dian performance at different target velocities. Vertical
bars show the interquartile range. The same saccade du-
rations were used for each line but they have been hor-
izontally offset for clarity. A) The probabilistic tracker
NFS variant. B) The facilitation tracker. C) No track-
ing.

4.3 Velocity of target prior to failure

As the ESTMD model is a motion-based detector, if the
target moves sufficiently slowly then it is essentially in-
visible to the detector. When distractors are present,
a slowly moving target may produce weaker responses
than relatively swift distractors. To compare how effec-
tively each tracker handled this complication, we quan-
tified the median target velocity in the 30 ms prior to
failure. With slow moving distractors, the majority of
failures for the probabilistic NFS and FS variants and
also the facilitation tracker occurred when the target
was moving slower than 80 ◦ s−1, indicating that track-
ing was generally successful when the target was moving
quickly despite the presence of distractors: Figure 5A.



With a forward velocity of 3 m s−1, the two probabilis-
tic trackers and the facilitation tracker showed increased
failures at high target velocities: Figure 5B and C. How-
ever, the facilitation tracker showed a much greater shift
towards failures at high target velocities than the prob-
abilistic trackers. At 6 m s−1, the majority of failures
for all trackers were occurring at high target velocities,
which is consistent with failure occurring very early in
the trial as the target always began the trial moving
at 120 ◦ s−1. These results indicate that the probabilis-
tic trackers can robustly handle weak distractors when
there is a strong target signature and that these trackers
suffer less of a degradation in performance for stronger
distractors than the facilitation tracker.

Figure 5: The probability of a failure occurring as a func-
tion of the median target speed in the last 30 ms. Failure
was taken to occur when the target first left the screen.
The visual field was 60◦ horizontal by 30◦ vertical. The
stacked bars indicate the proportion of failures associ-
ated with low (< 80 ◦ s−1) or high (≥ 80 ◦ s−1) median
target velocity prior to failure. Instant turns were used
(zero saccade duration). The observer moved towards
the distractors at the velocity shown in the labels.

5 Discussion

Recent investigations into predictive gain modulation in
dragonfly STMDs have shown that although the mag-
nitude of modulation depends upon the velocity of the
target, which itself correlates with the strength of the
STMD response, the rate at which this gain spreads
through the visual field is velocity independent [Fabian
et al., 2019]. One interpretation of this result is that if
this predictive gain forms part of the dragonfly’s state
estimation mechanism, then that mechanism effectively
assumes a constant target velocity. That is, if the gain
value for a point in space is reflective of the likelihood
that the target is expected to be in the visual field, then
a constant rate of spread of that likelihood is reflective
of a constant target velocity. Our result that the proba-

bilistic FS variant performed as well as, or in some cases
better, than the NFS variant forms an interesting paral-
lel with these physiological findings.

The apparently poor performance of the facilitation
tracker in the presence of strong distractors in this study
may be explained by two factors. Firstly, we did not
search for optimal parameters for the tracker, but rather
used parameters which were reported to work well in
[Bagheri et al., 2015]. Our tracking scenario differs
in many respects from the tracking scenario used by
Bagheri et al., most notably in the way that visual clut-
ter was generated, and so it would be unsurprising if
the two scenarios do not share the same set of optimal
parameters. Secondly, in our scenario the target always
entered from the left side of the visual field. As a result,
the gain values of the facilitation tracker would, at least
in the early part of the trial, be relatively high in the left
side of the visual field, leading to greater susceptibility
to distractors in that region. It may be that if the tar-
get had first appeared in the centre of the visual field,
different results would be observed; however, motion of
the target from the periphery to the visual midline has
been shown to induce prey pursuits [Lin and Leonardo,
2017] and so this is a behaviourally relevant scenario.

6 Conclusion

We evaluated a tracker based on a grid-based estimator
against several alternative tracking methods including
a bio-inspired tracker which had previously been evalu-
ated using ESTMD outputs. The probabilistic tracker
was able to reject distractors more effectively than the
alternative trackers when the observer was able to exe-
cute instantaneous changes of angle, or saccades. Longer
saccade durations significantly impaired the performance
of the tracker. A variant of the probabilistic tracker us-
ing a fixed distribution of speed was more resilient to
slow moving distractors. Our results show that using
a suitable observation model allowed for effective track-
ing of a target amidst distractors using the outputs of
the ESTMD model without estimating the direction of
target motion.
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