PARSIMONIOUS SIMULATION OF DAILY RAINFALL FIELDS

B BENNETT, M THYER, M LEONARD, M LAMBERT AND B BATES

Introduction

- Design and management of water systems relies on inputs of rainfall and/or streamflow
 - Evaluate Drought Risk
 - Evaluate Flood Risk
 - Evaluate Ecological Risk
- Historical data provide results that are only one realisation of the past climate
 - Produces unreliable estimates of risk
- Stochastic data -> improve estimates of risk

Stochastic Data

- Stochastic hydrological data
 - Random numbers (stochastic time series models)
 - Calibrated to have same statistical characteristics as historical data
- Provides multiple time series of data
 - Each time series is an alternative realisation that is equally likely to occur
 - Use as input into models to quantify uncertainty
 - Hydrological models
 - Ecological models
 - Storage yield analysis
 - Water resources models

Stochastic Data

- <u>But</u> Risks correlated in space
 - Drought, flood, ecological response
- Need <u>spatial</u> stochastic
 data

Weather radar Adelaide

Need Spatial Stochastic Rainfall Data

- Spatial variability of rainfall significantly affects catchment response
- Better understanding & prediction of flood & drought risk

Weather radar Adelaide

No easy, flexible rain field simulator

- Current approaches poorly capture spatial variability
 - Interpolation of observations -No time consideration, conditional, no stochastic estimate of risk
 - Multisite limited ability to capture space-time variability
 - Spatial models Too complex, challenging to calibrate, un-realistic spatial patterns i.e Spatial Neyman-Scott models

A continuous daily rain field model

- Simulation of the full field evolving in time
 - Parsimonious and flexible approach
 - Latent variable approach conditions amounts on occurrences and incorporates skewness
- Continuous simulation of unconditional rainfall fields
 - Flexible, Parsimonious
 - On grid
 - Choose your own spatial resolution
 - Stochastic realisations better risk estimates

Simulation of spatial field with truncation

- Temporal Correlation lag-1 autoregressive model (constant \(\phi \) for region)

Simulation of spatial field with truncation

- Spatial correlation function— powered exponential (isotropic)
- □ 12 seasons parameters vary seasonally

Onkaparinga Study

- Adelaide's major water supply catchment
- Data
 - 73 yrs high-quality observed rainfall
 - 19 sites inside grid

Realistic continuous rainfall fields

- □ Simulation
 - 100 replicates
 - □ Grid 0.78km²
- Capturing the spatiotemporal statistics of rain fields

Performance classification scheme

Performance classification scheme

 Bar plots present performance as a percentage of sites

Verified model structure at daily level - marginal

Verified model structure at daily level - temporal

Ó

Aggregate totals test - majority good

Month-to-month and yearly correlations preserved

Rainfall extremes: Overall good

Emergent property – not calibrated

Cross-validation Shows Good Performance

Space-time occurrence well preserved

Spatial Rainfall Gradient Preserved

Average Annual Total Rainfall

Cumulative performance over all grid locations

Advantages

- Parsimonious & flexible
- Stochastic realisations
 - Better stochastic estimates of risk
- Continuous spatial fields
- Choose your own resolution

Next steps

- Improve inter-annual variability
 - Assumption of stationarity
- Radar data to inform spatial correlation structure
- Locations with tropical weather systems
- Conditioned on observations, GCMs, Weather types